import cv2 import numpy as np import torch np.random.seed(0) def get_negative_mask(batch_size): negative_mask = torch.ones((batch_size, 2 * batch_size), dtype=bool) for i in range(batch_size): negative_mask[i, i] = 0 negative_mask[i, i + batch_size] = 0 return negative_mask class GaussianBlur(object): def __init__(self, min=0.1, max=2.0, kernel_size=9): self.min = min self.max = max self.kernel_size = kernel_size def __call__(self, sample): sample = np.array(sample) # blur the image with a 50% chance prob = np.random.random_sample() if prob < 0.5: sigma = (self.max - self.min) * np.random.random_sample() + self.min sample = cv2.GaussianBlur(sample, (self.kernel_size, self.kernel_size), sigma) return sample # if use_cosine_similarity: # cos1d = torch.nn.CosineSimilarity(dim=1) # cos2d = torch.nn.CosineSimilarity(dim=2) # similarity_dim1 = lambda x, y: cos1d(x, y.unsqueeze(0)) # similarity_dim2 = lambda x, y: cos2d(x, y.unsqueeze(0)) # else: # similarity_dim1 = lambda x, y: torch.bmm(x.unsqueeze(1), y.unsqueeze(2)) # similarity_dim2 = lambda x, y: torch.tensordot(x, y.T.unsqueeze(0), dims=2)