SimCLR/train.py
2020-03-12 22:34:21 -03:00

148 lines
4.7 KiB
Python

import shutil
import torch
import yaml
print(torch.__version__)
import torch.optim as optim
import os
from torchvision import datasets
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
import numpy as np
from models.resnet_simclr import ResNetSimCLR
from utils import get_similarity_function, get_train_validation_data_loaders
from data_aug.data_transform import DataTransform, get_simclr_data_transform
torch.manual_seed(0)
np.random.seed(0)
config = yaml.load(open("config.yaml", "r"), Loader=yaml.FullLoader)
batch_size = config['batch_size']
out_dim = config['out_dim']
temperature = config['temperature']
use_cosine_similarity = config['use_cosine_similarity']
data_augment = get_simclr_data_transform(s=config['s'], crop_size=96)
train_dataset = datasets.STL10('./data', split='train+unlabeled', download=True, transform=DataTransform(data_augment))
train_loader, valid_loader = get_train_validation_data_loaders(train_dataset, **config)
# model = Encoder(out_dim=out_dim)
model = ResNetSimCLR(base_model=config["base_convnet"], out_dim=out_dim)
if config['continue_training']:
checkpoints_folder = os.path.join('./runs', config['continue_training'], 'checkpoints')
state_dict = torch.load(os.path.join(checkpoints_folder, 'model.pth'))
model.load_state_dict(state_dict)
print("Loaded pre-trained model with success.")
train_gpu = torch.cuda.is_available()
print("Is gpu available:", train_gpu)
# moves the model parameters to gpu
if train_gpu:
model = model.cuda()
criterion = torch.nn.CrossEntropyLoss(reduction='sum')
optimizer = optim.Adam(model.parameters(), 3e-4)
train_writer = SummaryWriter()
similarity_func = get_similarity_function(use_cosine_similarity)
megative_mask = (1 - torch.eye(2 * batch_size)).type(torch.bool)
labels = (np.eye((2 * batch_size), 2 * batch_size - 1, k=-batch_size) + np.eye((2 * batch_size), 2 * batch_size - 1,
k=batch_size - 1)).astype(np.int)
labels = torch.from_numpy(labels)
softmax = torch.nn.Softmax(dim=-1)
if train_gpu:
labels = labels.cuda()
def step(xis, xjs):
# get the representations and the projections
ris, zis = model(xis) # [N,C]
# get the representations and the projections
rjs, zjs = model(xjs) # [N,C]
if n_iter % config['log_every_n_steps'] == 0:
train_writer.add_histogram("xi_repr", ris, global_step=n_iter)
train_writer.add_histogram("xi_latent", zis, global_step=n_iter)
train_writer.add_histogram("xj_repr", rjs, global_step=n_iter)
train_writer.add_histogram("xj_latent", zjs, global_step=n_iter)
# normalize projection feature vectors
zis = F.normalize(zis, dim=1)
zjs = F.normalize(zjs, dim=1)
negatives = torch.cat([zjs, zis], dim=0)
logits = similarity_func(negatives, negatives)
logits = logits[megative_mask.type(torch.bool)].view(2 * batch_size, -1)
logits /= temperature
# assert logits.shape == (2 * batch_size, 2 * batch_size - 1), "Shape of negatives not expected." + str(
# logits.shape)
probs = softmax(logits)
loss = torch.mean(-torch.sum(labels * torch.log(probs), dim=-1))
return loss
model_checkpoints_folder = os.path.join(train_writer.log_dir, 'checkpoints')
if not os.path.exists(model_checkpoints_folder):
os.makedirs(model_checkpoints_folder)
shutil.copy('./config.yaml', os.path.join(model_checkpoints_folder, 'config.yaml'))
n_iter = 0
valid_n_iter = 0
best_valid_loss = np.inf
for epoch_counter in range(config['epochs']):
for (xis, xjs), _ in train_loader:
optimizer.zero_grad()
if train_gpu:
xis = xis.cuda()
xjs = xjs.cuda()
loss = step(xis, xjs)
train_writer.add_scalar('train_loss', loss, global_step=n_iter)
loss.backward()
optimizer.step()
n_iter += 1
if epoch_counter % config['eval_every_n_epochs'] == 0:
# validation steps
with torch.no_grad():
model.eval()
valid_loss = 0.0
for counter, ((xis, xjs), _) in enumerate(valid_loader):
if train_gpu:
xis = xis.cuda()
xjs = xjs.cuda()
loss = (step(xis, xjs))
valid_loss += loss.item()
valid_loss /= counter
if valid_loss < best_valid_loss:
# save the model weights
best_valid_loss = valid_loss
torch.save(model.state_dict(), os.path.join(model_checkpoints_folder, 'model.pth'))
train_writer.add_scalar('validation_loss', valid_loss, global_step=valid_n_iter)
valid_n_iter += 1
model.train()