SimCLR/run.py

90 lines
4.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import argparse
import torch
import torch.backends.cudnn as cudnn
from torchvision import models
from data_aug.contrastive_learning_dataset import ContrastiveLearningDataset
from models.resnet_simclr import ResNetSimCLR
from simclr import SimCLR
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch SimCLR')
parser.add_argument('-data', metavar='DIR', default='./datasets',
help='path to dataset')
parser.add_argument('-dataset-name', default='stl10',
help='dataset name', choices=['stl10', 'cifar10'])
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=12, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--disable-cuda', action='store_true',
help='Disable CUDA')
parser.add_argument('--fp16_precision', default=False, type=bool,
help='Whether or not to use 16-bit precision GPU training.')
parser.add_argument('--out_dim', default=128, type=int,
help='feature dimension (default: 128)')
parser.add_argument('--log-every-n-steps', default=100, type=int,
help='Log every n steps')
parser.add_argument('--temperature', default=0.07, type=float,
help='softmax temperature (default: 0.07)')
parser.add_argument('--n-views', default=2, type=int, metavar='N',
help='Number of views for contrastive learning training.')
parser.add_argument('--gpu-index', default=0, type=int, help='Gpu index.')
def main():
args = parser.parse_args()
assert args.n_views == 2, "Only two view training is supported. Please use --n-views 2."
# check if gpu training is available
if not args.disable_cuda and torch.cuda.is_available():
args.device = torch.device('cuda')
cudnn.deterministic = True
cudnn.benchmark = True
else:
args.device = torch.device('cpu')
args.gpu_index = -1
dataset = ContrastiveLearningDataset(args.data)
train_dataset = dataset.get_dataset(args.dataset_name, args.n_views)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
model = ResNetSimCLR(base_model=args.arch, out_dim=args.out_dim)
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0,
last_epoch=-1)
# Its a no-op if the 'gpu_index' argument is a negative integer or None.
with torch.cuda.device(args.gpu_index):
simclr = SimCLR(model=model, optimizer=optimizer, scheduler=scheduler, args=args)
simclr.train(train_loader)
if __name__ == "__main__":
main()