SimCLR/data_aug/data_transform.py

47 lines
1.7 KiB
Python

import torchvision.transforms as transforms
import cv2
import numpy as np
class DataTransform(object):
def __init__(self, transform):
self.transform = transform
def __call__(self, sample):
xi = self.transform(sample)
xj = self.transform(sample)
return xi, xj
class GaussianBlur(object):
# Implements Gaussian blur as described in the SimCLR paper
def __init__(self, kernel_size, min=0.1, max=2.0):
self.min = min
self.max = max
# kernel size is set to be 10% of the image height/width
self.kernel_size = kernel_size
def __call__(self, sample):
sample = np.array(sample)
# blur the image with a 50% chance
prob = np.random.random_sample()
if prob < 0.5:
sigma = (self.max - self.min) * np.random.random_sample() + self.min
sample = cv2.GaussianBlur(sample, (self.kernel_size, self.kernel_size), sigma)
return sample
def get_data_transform_opes(s, crop_size):
# get a set of data augmentation transformations as described in the SimCLR paper.
color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
data_transforms = transforms.Compose([transforms.RandomResizedCrop(size=crop_size),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([color_jitter], p=0.8),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(kernel_size=int(0.1 * crop_size)),
transforms.ToTensor()])
return data_transforms