- [Object retrieval with large vocabularies and fast spatial matching](https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf), CVPR 2007.
- [Visual Categorization with Bags of Keypoints](http://www.cs.princeton.edu/courses/archive/fall09/cos429/papers/csurka-eccv-04.pdf), ECCV 2004.
- [ORB: an efficient alternative to SIFT or SURF](https://www.willowgarage.com/sites/default/files/orb_final.pdf), ICCV 2011.
- [Object Recognition from Local Scale-Invariant Features](http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf), ICCV 1999.
- [Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval](https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf), ICCV 2007.
- [Three things everyone should know to improve object retrieval](https://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf), CVPR 2012.
- [On-the-fly learning for visual search of large-scale image and video datasets](https://www.robots.ox.ac.uk/~vgg/publications/2015/Chatfield15/chatfield15.pdf)
- [Aggregating Deep Convolutional Features for Image Retrieval](https://arxiv.org/abs/1510.07493), [论文笔记](https://zhuanlan.zhihu.com/p/23136747), [基于深度学习的视觉实例搜索研究进展](https://zhuanlan.zhihu.com/p/22265265).
- [Particular object retrieval with integral max-pooling of CNN activations](https://arxiv.org/abs/1511.05879), [project](http://cmp.felk.cvut.cz/~toliageo/soft.html)
- [Particular object retrieval using CNN](https://github.com/AaltoVision/Object-Retrieval)
- [Learning to Match Aerial Images with Deep Attentive Architectures](https://vision.cornell.edu/se3/wp-content/uploads/2016/04/1204.pdf).
- [Regional Attention Based Deep Feature for Image Retrieval](https://sglab.kaist.ac.kr/RegionalAttention/), [code](https://github.com/jaeyoon1603/Retrieval-RegionalAttention), BMVC 2018.
- [DISK: Learning local features with policy gradient](https://arxiv.org/pdf/2006.13566.pdf), NeurIPS 2020, [code](https://github.com/cvlab-epfl/disk).
- [Learning and aggregating deep local descriptorsfor instance-level recognition](https://paperswithcode.com/paper/learning-and-aggregating-deep-local/review/), ECCV 2020, [code](https://github.com/jenicek/asmk).
- [UR2KiD: Unifying Retrieval, Keypoint Detection, and Keypoint Description without Local Correspondence Supervision](https://arxiv.org/abs/2001.07252), arxiv.
- [Beyond Cartesian Representations for Local Descriptors](https://arxiv.org/abs/1908.05547), [code](https://github.com/cvlab-epfl/log-polar-descriptors), ICCV 2019.
- [Learning Discriminative Affine Regions via Discriminability](http://cn.arxiv.org/pdf/1711.06704.pdf), [affnet](https://github.com/ducha-aiki/affnet)
- [A Large Dataset for Improving Patch Matching](http://cn.arxiv.org/pdf/1801.01466.pdf), [PS-Dataset](https://github.com/rmitra/PS-Dataset)
- [Working hard to know your neighbor's margins: Local descriptor learning loss](), [hardnet](https://github.com/DagnyT/hardnet)
- [MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching](), [matchnet](https://github.com/hanxf/matchnet)
- [Local Descriptors Optimized for Average Precision](http://openaccess.thecvf.com/content_cvpr_2018/papers/He_Local_Descriptors_Optimized_CVPR_2018_paper.pdf), CVPR 2018
- [SuperPoint: Self-Supervised Interest Point Detection and Description](http://cn.arxiv.org/pdf/1712.07629.pdf), Magic Leap
- [RobustiQ A Robust ANN Search Method for Billion-scale Similarity Search on GPUs](http://users.monash.edu/~yli/assets/pdf/icmr19-sigconf.pdf), ICMR 2019.
- [Zoom: Multi-View Vector Search for Optimizing Accuracy, Latency and Memory](https://www.microsoft.com/en-us/research/uploads/prod/2018/08/zoom-multi-view-tech-report.pdf)
- [Vector and Line Quantization for Billion-scale Similarity Search on GPUs](http://users.monash.edu/~yli/assets/pdf/vlq_fgcs.pdf)
- [Practical and Optimal LSH for Angular Distance](chrome-extension://ikhdkkncnoglghljlkmcimlnlhkeamad/pdf-viewer/web/viewer.html?file=http%3A%2F%2Fpapers.nips.cc%2Fpaper%2F5893-practical-and-optimal-lsh-for-angular-distance.pdf)
- [lopq](https://github.com/yahoo/lopq). Training of Locally Optimized Product Quantization (LOPQ) models for approximate nearest neighbor search of high dimensional data in Python and Spark.
- [nns_benchmark](https://github.com/DBWangGroupUNSW/nns_benchmark). Benchmark of Nearest Neighbor Search on High Dimensional Data.
- [NMSLIB](https://github.com/searchivarius/nmslib). Non-Metric Space Library (NMSLIB): A similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.
- [Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs](https://github.com/nmslib/hnsw), graph-based method.
- [Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors](https://arxiv.org/abs/1802.02422),[code](https://github.com/dbaranchuk/ivf-hnsw)
- [Videntifier](http://videntifier.com/) is a visual search engine based on a patented large-scale local feature database, [demo](http://flickrdemo.videntifier.com/), based on SIFT feature and NV-tree.
- [Deep Learning based Large Scale Visual Recommendation and Search for E-Commerce](https://arxiv.org/abs/1703.02344), [project](https://github.com/flipkart-incubator/fk-visual-search)
- [Large-scale Landmark Retrieval/Recognition under a Noisy and Diverse Dataset](https://arxiv.org/pdf/1906.04087.pdf), [Landmark2019-1st-and-3rd-Place-Solution](https://github.com/lyakaap/Landmark2019-1st-and-3rd-Place-Solution).
- [A Robust and Fast Video Copy Detection System Using Content-Based Fingerprinting](https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiisbW0maXYAhXLOY8KHUw0AEsQFgg7MAI&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F7b4f%2F68e227999da8ffc6dc9f7fd34da5ebaad09f.pdf&usg=AOvVaw0mZvcT7VhEuEm68oieXLv-)
- [Homography from two orientation- and scale-covariant features](https://arxiv.org/pdf/1906.11927.pdf), [code](https://github.com/danini/homography-from-sift-features).
- [How to Apply Distance Metric Learning to Street-to-Shop Problem](https://medium.com/mlreview/how-to-apply-distance-metric-learning-for-street-to-shop-problem-d21247723d2a)
- [Image Similarity using Deep Ranking](https://medium.com/@akarshzingade/image-similarity-using-deep-ranking-c1bd83855978), [code](https://github.com/akarshzingade/image-similarity-deep-ranking).
- [VRG Prague in “Large-Scale Landmark Recognition Challenge”](https://drive.google.com/file/d/1NFhfkqKjo_bXM-yuI3KbZt_iHRmiUyTG/view), ranked 3rd in the Google Landmark Recognition Challenge.
- [Holidays](https://rd.springer.com/chapter/10.1007/978-3-540-88682-2_24), Holidays consists images from personal holiday albums of various scene types.
- [Oxford](https://ieeexplore.ieee.org/document/4270197), Oxford consists of 11 different Oxford landmarks.
- [Paris](https://ieeexplore.ieee.org/abstract/document/4587635/), Paris consists of images crawled from 11 queries on specific Paris architecture.
- [ROxford and RParis](https://openaccess.thecvf.com/content_cvpr_2018/html/Radenovic_Revisiting_Oxford_and_CVPR_2018_paper.html), ROxford and RParis are revisited versions of the original Oxford and Paris with annotation corrections, enlarged sizes and more difficult samples.
- [INSTRE](https://dl.acm.org/doi/abs/10.1145/2700292), INSTRE is an instance-level object retrieval dataset.