2019-12-15 10:42:58 +08:00
< div align = "center" >
< img width = "500" height = "350" src = "logo.svg" alt = "Awesome" >
< br >
< p >
< a href = "https://github.com/willard-yuan/awesome-cbir-papers" > CBIR in academia and industry< / a >
< / p >
< / div >
2019-12-15 10:35:09 +08:00
# Awesome image retrieval papers
The main goal is collect classical and solid work of image retrieval in academia and industry.
[](https://awesome.re)
2020-08-19 13:34:13 +08:00
- [Classical Local Feature ](#classical-local-feature )
- [Deep Learning Feature (Global Feature) ](#deep-learning-feature-global-feature )
- [Deep Learning Feature (Local Feature) ](#deep-learning-feature-local-feature )
- [Deep Learning Feature (Object discovery based) ](#deep-learning-feature-object-discovery-based )
- [Cross Modal Retrieval ](#cross-modal-retrieval )
- [ANN search ](#ann-search )
- [CBIR Attack ](#cbir-attack )
- [CBIR rank ](#cbir-rank )
- [CBIR in Industry ](#cbir-in-industry )
- [CBIR Competition and Challenge ](#cbir-competition-and-challenge )
- [CBIR for Duplicate(copy) detection ](#cbir-for-duplicatecopy-detection )
- [Feature Fusion ](#feature-fusion )
- [Instance Matching ](#instance-matching )
- [Semantic Matching ](#semantic-matching )
- [Template Matching ](#template-matching )
- [Image Identification ](#image-identification )
- [Tutorials ](#tutorials )
- [Slide ](#slide )
- [Demo and Demo Online ](#demo-and-demo-online )
- [Datasets ](#datasets )
- [Useful Package ](#useful-package )
2019-12-15 10:35:09 +08:00
2020-03-04 21:17:28 +08:00
## Classical Local Feature
2016-12-13 18:55:39 +08:00
2020-03-28 00:34:50 +08:00
- [Object retrieval with large vocabularies and fast spatial matching ](https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf ), CVPR 2007.
- [Visual Categorization with Bags of Keypoints ](http://www.cs.princeton.edu/courses/archive/fall09/cos429/papers/csurka-eccv-04.pdf ), ECCV 2004.
- [ORB: an efficient alternative to SIFT or SURF ](https://www.willowgarage.com/sites/default/files/orb_final.pdf ), ICCV 2011.
- [Object Recognition from Local Scale-Invariant Features ](http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf ), ICCV 1999.
- [Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval ](https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf ), ICCV 2007.
- [Three things everyone should know to improve object retrieval ](https://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf ), CVPR 2012.
2017-03-02 10:19:50 +08:00
- [On-the-fly learning for visual search of large-scale image and video datasets ](https://www.robots.ox.ac.uk/~vgg/publications/2015/Chatfield15/chatfield15.pdf )
2020-03-28 00:34:50 +08:00
- [All about VLAD](), CVPR 2013.
- [Aggregating localdescriptors into a compact image representation](), CVPR 2010.
2017-10-07 10:44:45 +08:00
- [More About VLAD: A Leap from Euclidean to Riemannian Manifolds]()
2017-11-21 09:16:57 +08:00
- [Hamming embedding and weak geometric consistency for large scale image search]()
2017-10-07 10:44:45 +08:00
- [Revisiting the VLAD image representation ](https://hal.inria.fr/hal-00840653v1/document ), [project ](https://github.com/jorjasso/VLAD/blob/master/VLADlib/VLAD.py )
2020-03-28 00:34:50 +08:00
- [Improving the Fisher Kernel for Large-Scale Image Classification ](https://www.robots.ox.ac.uk/~vgg/rg/papers/peronnin_etal_ECCV10.pdf ), ECCV 2010.
2017-10-07 10:44:45 +08:00
- [Image Classification with the Fisher Vector: Theory and Practice ](https://hal.inria.fr/hal-00830491/document )
2017-11-21 09:16:57 +08:00
- [Democratic Diffusion Aggregation for ImageRetrieval]()
2020-03-28 00:34:50 +08:00
- [A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval](), ACCV 2016.
2017-11-27 09:04:22 +08:00
- [Triangulation embedding and democratic aggregation for image search]()
2018-08-15 09:41:47 +08:00
- [Efficient Large-scale Image Search With a Vocabulary Tree ](http://www.ipol.im/pub/art/2018/199/ ), [code ](https://github.com/fragofer/voctree )
2016-12-13 18:55:39 +08:00
2019-12-15 10:35:09 +08:00
## Deep Learning Feature (Global Feature)
2016-12-13 18:55:39 +08:00
2020-08-06 00:46:02 +08:00
- [Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval ](https://arxiv.org/pdf/2007.12163.pdf ), ECCV 2020
2020-07-28 23:33:27 +08:00
- [SOLAR: Second-Order Loss and Attention for Image Retrieval ](https://arxiv.org/pdf/2001.08972.pdf ), ECCV 2020.
2020-03-12 21:47:37 +08:00
- [Unifying Deep Local and Global Features for Image Search ](https://arxiv.org/abs/2001.05027 ), arxiv 2020.
2020-02-06 09:25:12 +08:00
- [SOLAR: Second-Order Loss and Attention for Image Retrieval ](https://arxiv.org/abs/2001.08972v2 ), arxiv 2020.
2020-03-04 21:17:28 +08:00
- [A Benchmark on Tricks for Large-scale Image Retrieval ](https://arxiv.org/pdf/1907.11854.pdf ), arxiv 2020。
- [Learning with Average Precision: Training Image Retrieval with a Listwise Loss ](https://arxiv.org/pdf/1906.07589v1.pdf ), ICCV 2019。
- [MultiGrain: a unified image embedding for classes and instances ](https://arxiv.org/abs/1902.05509 ), arxiv 2019.
2018-08-17 16:44:27 +08:00
- [Deep Image Retrieval:Learning Global Representations for Image search ](https://arxiv.org/abs/1604.01325 )
- [End-to-end Learning of Deep Visual Representations for Image retrieval ](https://arxiv.org/abs/1610.07940 ), DIR更详细的论文说明
- [What Is the Best Practice for CNNs Applied to Visual Instance Retrieval? ](https://arxiv.org/abs/1611.01640 ), 关于layer选取的问题
2016-12-19 23:49:56 +08:00
- [Bags of Local Convolutional Features for Scalable Instance Search ](https://arxiv.org/abs/1604.01325 )
2020-08-19 13:34:13 +08:00
- [Faster R-CNN Features for Instance Search ](https://github.com/imatge-upc/retrieval-2016-deepvision ), CVPR workshop 2016
2016-12-19 23:49:56 +08:00
- [Cross-dimensional Weighting for Aggregated Deep Convolutional Features ](https://arxiv.org/abs/1512.04065 ), [project ](https://github.com/yahoo/crow )
2017-07-12 14:11:12 +08:00
- [Class-Weighted Convolutional Features for Image Retrieval ](https://github.com/imatge-upc/retrieval-2017-cam )
2017-05-04 09:28:58 +08:00
- [Multi-Scale Orderless Pooling of Deep Convolutional Activation Features](), VLAD coding
2017-01-17 23:18:29 +08:00
- [Aggregating Deep Convolutional Features for Image Retrieval ](https://arxiv.org/abs/1510.07493 ), [论文笔记 ](https://zhuanlan.zhihu.com/p/23136747 ), [基于深度学习的视觉实例搜索研究进展 ](https://zhuanlan.zhihu.com/p/22265265 ).
2017-06-03 17:33:53 +08:00
- [Particular object retrieval with integral max-pooling of CNN activations ](https://arxiv.org/abs/1511.05879 ), [project ](http://cmp.felk.cvut.cz/~toliageo/soft.html )
- [Particular object retrieval using CNN ](https://github.com/AaltoVision/Object-Retrieval )
- [Learning to Match Aerial Images with Deep Attentive Architectures ](https://vision.cornell.edu/se3/wp-content/uploads/2016/04/1204.pdf ).
2017-02-04 23:00:49 +08:00
- [Siamese Network of Deep Fisher-Vector Descriptors for Image Retrieval ](https://arxiv.org/pdf/1702.00338v1.pdf )
2017-06-02 09:51:01 +08:00
- [Combining Fisher Vector and Convolutional Neural Networks for Image Retrieval ](http://ceur-ws.org/Vol-1653/paper_19.pdf ), fv和cnn特征融合提升
2017-07-12 14:11:12 +08:00
- [Selective Deep Convolutional Features for Image Retrieval ](https://arxiv.org/pdf/1707.00809v1.pdf )
2017-07-13 09:20:43 +08:00
- [Class-Weighted Convolutional Features for Image Retrieval ](https://github.com/imatge-upc/retrieval-2017-cam )
2017-11-02 08:42:46 -05:00
- [Towards Good Practices for Image Retrieval Based on CNN Features]()
2017-11-21 09:16:57 +08:00
- [Fine-tuning CNN Image Retrieval with No Human Annotation ](https://arxiv.org/abs/1711.02512 )
2018-07-23 18:19:28 +08:00
- [An accurate retrieval through R-MAC+ descriptors for landmark recognition ](https://arxiv.org/pdf/1806.08565.pdf )
2018-08-02 23:36:25 +08:00
- [Regional Attention Based Deep Feature for Image Retrieval ](https://sglab.kaist.ac.kr/RegionalAttention/ ), [code ](https://github.com/jaeyoon1603/Retrieval-RegionalAttention ), BMVC 2018.
2020-08-19 13:34:13 +08:00
- [Detect-to-Retrieve: Efficient Regional Aggregation for Image Search ](https://arxiv.org/pdf/1812.01584.pdf ), CVPR 2019.
2019-11-27 23:46:11 +08:00
- [Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking ](http://cmp.felk.cvut.cz/~toliageo/p/RadenovicIscenToliasAvrithisChum_CVPR2018_Revisiting%20Oxford%20and%20Paris:%20Large-Scale%20Image%20Retrieval%20Benchmarking.pdf ), [project ](http://cmp.felk.cvut.cz/revisitop/ ), CVPR 2018.
- [Guided Similarity Separation for Image Retrieval ](https://github.com/layer6ai-labs/GSS ), NeurIPS 2019.
2016-11-06 23:28:06 +08:00
2019-12-15 10:35:09 +08:00
## Deep Learning Feature (Local Feature)
2018-01-25 11:03:23 +08:00
2020-07-03 09:54:02 +08:00
- [DISK: Learning local features with policy gradient ](https://arxiv.org/pdf/2006.13566.pdf ), arxiv 2006.13566.
2020-06-01 10:45:08 +08:00
- [D2D: Keypoint Extraction with Describe to Detect Approach ](https://arxiv.org/pdf/2005.13605.pdf ), arxiv 2020.
2020-02-27 09:35:10 +08:00
- [UR2KiD: Unifying Retrieval, Keypoint Detection, and Keypoint Description without Local Correspondence Supervision ](https://arxiv.org/abs/2001.07252 ), arxiv.
2020-03-04 21:17:28 +08:00
- [Visualizing Deep Similarity Networks ](https://arxiv.org/pdf/1901.00536.pdf ).
- [Combination of Multiple Global Descriptors for Image Retrieval ](https://github.com/naver/cgd ).
2020-03-01 15:02:31 +08:00
- [Beyond Cartesian Representations for Local Descriptors ](https://arxiv.org/abs/1908.05547 ), [code ](https://github.com/cvlab-epfl/log-polar-descriptors ), ICCV 2019.
2019-12-18 09:36:25 +08:00
- [R2D2: Reliable and Repeatable Detector and Descriptor ](https://arxiv.org/abs/1906.06195 ), [R2D2 ](https://github.com/naver/r2d2 ), NeurIPS 2019.
2020-03-01 15:02:31 +08:00
- [SOSNet: Second Order Similarity Regularization for Local Descriptor Learning ](https://github.com/scape-research/SOSNet ), CVPR 2019.
- [Local Features and Visual Words Emerge in Activations ](https://avrithis.net/data/pub/pdf/conf/C110.cvpr19.spatial.pdf ), CVPR 2019.
- [Explicit Spatial Encoding for Deep Local Descriptors ](https://arxiv.org/abs/1904.07190 ), CVPR 2019.
- [Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters ](https://github.com/axelBarroso/Key.Net ), ICCV 2019.
2018-01-25 11:03:23 +08:00
- [Learning Discriminative Affine Regions via Discriminability ](http://cn.arxiv.org/pdf/1711.06704.pdf ), [affnet ](https://github.com/ducha-aiki/affnet )
- [A Large Dataset for Improving Patch Matching ](http://cn.arxiv.org/pdf/1801.01466.pdf ), [PS-Dataset ](https://github.com/rmitra/PS-Dataset )
- [Working hard to know your neighbor's margins: Local descriptor learning loss](), [hardnet ](https://github.com/DagnyT/hardnet )
- [MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching](), [matchnet ](https://github.com/hanxf/matchnet )
2018-12-06 10:06:05 +08:00
- [LF-Net: Learning Local Features from Images ](https://arxiv.org/abs/1805.09662 ), NeurIPS 2018.
2018-07-18 17:19:20 +08:00
- [Local Descriptors Optimized for Average Precision ](http://openaccess.thecvf.com/content_cvpr_2018/papers/He_Local_Descriptors_Optimized_CVPR_2018_paper.pdf ), CVPR 2018
- [SuperPoint: Self-Supervised Interest Point Detection and Description ](http://cn.arxiv.org/pdf/1712.07629.pdf ), Magic Leap
2018-09-13 17:48:38 +08:00
- [GeoDesc: Learning Local Descriptors by Integrating Geometry Constraints ](https://arxiv.org/pdf/1807.06294.pdf ), [code ](https://github.com/lzx551402/geodesc ), ECCV 2018.
2018-12-06 10:06:05 +08:00
- [Learning local feature descriptors with triplets and shallow convolutional neural networks ](https://github.com/vbalnt/tfeat ), BMVC 2016.
2020-08-19 13:34:13 +08:00
2016-11-06 23:28:06 +08:00
2020-08-19 13:34:13 +08:00
## Deep Learning Feature (Object discovery based)
- [Faster R-CNN Features for Instance Search ](https://github.com/imatge-upc/retrieval-2016-deepvision ), CVPR workshop 2016
- [Instance Search via Instance Level Segmentation and Feature Representation ](https://arxiv.org/abs/1806.03576 ), arXiv 2018
- [Unsupervised object discovery for instance recognition ](https://doi.org/10.1109/WACV.2018.00194 ), WACV 2018
- [Instance search based on weakly supervised feature learning ](https://doi.org/10.1016/j.neucom.2019.11.029 ), Neurocomputing 2019
- [Deeply Activated Salient Region for Instance Search ](https://arxiv.org/abs/2002.00185 ), arXiv 2020
## Cross Modal Retrieval
2020-03-04 21:17:28 +08:00
- [Composing Text and Image for Image Retrieval - An Empirical Odyssey ](https://arxiv.org/pdf/1812.07119.pdf )
2019-12-15 10:35:09 +08:00
## ANN search
2017-01-04 11:37:50 +08:00
2020-08-06 00:46:02 +08:00
- [Accelerating Large-Scale Inference with Anisotropic Vector Quantization ](https://arxiv.org/pdf/1908.10396.pdf ), [blog ](https://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html ), [code ](https://github.com/google-research/google-research/tree/master/scann ), ICML 2020.
2020-07-28 23:33:27 +08:00
- [Improving Approximate Nearest Neighbor Search through Learned Adaptive Early Termination ](https://www.pdl.cmu.edu/PDL-FTP/BigLearning/mod0246-liA.pdf ), SIGMOD 2020.
2020-01-05 16:15:24 +08:00
- [RobustiQ A Robust ANN Search Method for Billion-scale Similarity Search on GPUs ](http://users.monash.edu/~yli/assets/pdf/icmr19-sigconf.pdf ), ICMR 2019.
- [Zoom: Multi-View Vector Search for Optimizing Accuracy, Latency and Memory ](https://www.microsoft.com/en-us/research/uploads/prod/2018/08/zoom-multi-view-tech-report.pdf )
- [Vector and Line Quantization for Billion-scale Similarity Search on GPUs ](http://users.monash.edu/~yli/assets/pdf/vlq_fgcs.pdf )
2019-12-11 23:38:47 +08:00
- [GGNN: Graph-based GPU Nearest Neighbor Search ](https://github.com/cgtuebingen/ggnn ), arxiv 2019.
2019-07-21 19:45:58 +08:00
- [Learning to Route in Similarity Graphs ](https://arxiv.org/abs/1905.10987 ), ICML 2019.
2017-01-04 11:37:50 +08:00
- [Practical and Optimal LSH for Angular Distance ](chrome-extension://ikhdkkncnoglghljlkmcimlnlhkeamad/pdf-viewer/web/viewer.html?file=http%3A%2F%2Fpapers.nips.cc%2Fpaper%2F5893-practical-and-optimal-lsh-for-angular-distance.pdf )
2017-02-06 09:28:45 +08:00
- [pq-fast-scan ](https://github.com/technicolor-research/pq-fast-scan )
2017-03-08 09:32:01 +08:00
- [faiss ](https://github.com/facebookresearch/faiss ). A library for efficient similarity search and clustering of dense vectors.
2018-08-07 23:37:27 +08:00
- [Polysemous codes ](https://arxiv.org/abs/1609.01882 )
2018-01-18 09:51:21 +08:00
- [Optimized Product Quantization ](http://kaiminghe.com/cvpr13/index.html )
2017-03-08 09:32:01 +08:00
- [lopq ](https://github.com/yahoo/lopq ). Training of Locally Optimized Product Quantization (LOPQ) models for approximate nearest neighbor search of high dimensional data in Python and Spark.
- [nns_benchmark ](https://github.com/DBWangGroupUNSW/nns_benchmark ). Benchmark of Nearest Neighbor Search on High Dimensional Data.
- [Optimized Product Quantization ](http://kaiminghe.com/cvpr13/index.html )
- [Falconn ](https://github.com/FALCONN-LIB/FALCONN ). FAst Lookups of Cosine and Other Nearest Neighbors.
- [Annoy ](https://github.com/spotify/annoy ). Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
2018-04-18 09:32:05 +08:00
- [NMSLIB ](https://github.com/searchivarius/nmslib ). Non-Metric Space Library (NMSLIB): A similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.
2018-04-08 23:31:03 +08:00
- [Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs ](https://github.com/nmslib/hnsw ), graph-based method.
2018-01-31 15:26:00 +08:00
- [Fast Approximate Nearest Neighbor Search With Navigating Spreading-out Graphs ](https://arxiv.org/abs/1707.00143 ), [code ](https://github.com/ZJULearning/nsg )
2018-07-23 18:19:28 +08:00
- [Efficient Nearest Neighbors Search for Large-Scale Landmark Recognition ](http://cn.arxiv.org/pdf/1806.05946.pdf )
2018-08-07 23:37:27 +08:00
- [NV-tree: A Scalable Disk-Based High-Dimensional Index ](https://en.ru.is/media/skjol-td/PhDHerwig.pdf )
- [Dynamicity and Durability in Scalable Visual Instance Search ](https://arxiv.org/abs/1805.10942 )
2018-08-23 23:54:00 +08:00
- [Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors ](https://arxiv.org/abs/1802.02422 ), [code ](https://github.com/dbaranchuk/ivf-hnsw )
2018-08-08 23:40:41 +08:00
- [Link and code: Fast indexing with graphs and compact regression codes ](https://arxiv.org/abs/1804.09996 )
2018-09-04 23:35:00 +08:00
- [A Survey of Product Quantization ](https://www.jstage.jst.go.jp/article/mta/6/1/6_2/_pdf/ ),对于矢量量化方法一篇比较完整的调研,值得一读
- [GeoDesc: Learning Local Descriptors by Integrating Geometry Constraints ](https://arxiv.org/abs/1807.06294 ), 学习局部特征的descriptor, 匹配能力较强
2019-03-21 23:45:02 +08:00
- [Learning a Complete Image Indexing Pipeline ](https://arxiv.org/pdf/1712.04480.pdf ), CVPR 2018
2019-05-16 18:25:52 +08:00
- [spreading vectors for similarity search ](https://arxiv.org/abs/1806.03198 ), ICLR 2019.
2019-06-29 10:48:44 +08:00
- [SPTAG ](urlhttps://github.com/microsoft/SPTAG ): A library for fast approximate nearest neighbor search. Microsoft.
2019-03-21 23:45:02 +08:00
2020-05-07 14:48:46 +10:00
## CBIR Attack
- [Open Set Adversarial Examples ](https://arxiv.org/abs/1809.02681 )
2019-12-15 10:35:09 +08:00
## CBIR rank
2019-03-21 23:45:02 +08:00
2020-05-20 15:01:12 -05:00
- [Fast Spectral Ranking for Similarity Search ](http://arxiv.org/pdf/1703.06935.pdf ), [code ](https://github.com/ducha-aiki/manifold-diffusion ), CVPR 2018
2017-02-06 09:28:45 +08:00
2019-12-15 10:35:09 +08:00
## CBIR in Industry
2017-05-23 09:04:11 +08:00
2019-10-24 21:27:27 +08:00
- [Videntifier ](http://videntifier.com/ ) is a visual search engine based on a patented large-scale local feature database, [demo ](http://flickrdemo.videntifier.com/ ), based on SIFT feature and NV-tree.
2018-06-01 14:05:33 +08:00
- [Web-Scale Responsive Visual Search at Bing ](https://arxiv.org/abs/1802.04914 )
2019-12-22 10:11:33 +08:00
- [Visual Search at Alibaba ](https://dl.acm.org/citation.cfm?id=3219819.3219820 )
2018-06-01 14:05:33 +08:00
- [Visual Search at Pinterest ](https://labs.pinterest.com/user/themes/pinlabs/assets/paper/visual_search_at_pinterest.pdf )
- [Visual Discovery at Pinterest ](https://arxiv.org/abs/1702.04680 )
2020-03-01 15:06:20 +08:00
- [Learning a Unified Embedding for Visual Search at Pinterest ](https://arxiv.org/abs/1908.01707 ), KDD 2019.
2017-09-20 12:06:57 +08:00
- [Visual Search at ebay]()
2017-10-24 10:28:10 -05:00
- [Deep Learning based Large Scale Visual Recommendation and Search for E-Commerce ](https://arxiv.org/abs/1703.02344 ), [project ](https://github.com/flipkart-incubator/fk-visual-search )
2019-12-28 10:20:56 +08:00
- [微信「扫一扫识物」 的背后技术揭秘 ](https://mp.weixin.qq.com/s/fiUUkT7hyJwXmAGQ1kMcqQ )
2020-03-04 21:06:59 +08:00
- [揭秘微信「扫一扫」识物为什么这么快? ](https://mp.weixin.qq.com/s/EBCcBWob_iFa51-gOVPYQA )
2017-05-23 09:04:11 +08:00
2019-12-15 10:35:09 +08:00
## CBIR Competition and Challenge
2018-05-31 20:39:30 +08:00
- [Google Landmark Retrieval Challenge ](https://www.kaggle.com/c/landmark-retrieval-challenge ), 2018
- [Alibaba Large-scale Image Search Challenge ](https://tianchi.aliyun.com/competition/introduction.htm?raceId=231510&_lang=en_US ), 2015
2019-06-25 20:56:00 +08:00
- [Pkbigdata image retrieval ](http://www.pkbigdata.com/common/cmpt/%E5%9B%BE%E5%83%8F%E6%90%9C%E7%B4%A2%E7%AB%9E%E8%B5%9B_%E7%AB%9E%E8%B5%9B%E4%BF%A1%E6%81%AF.html ), 2015
2019-09-15 14:10:43 +08:00
- [Large-scale Landmark Retrieval/Recognition under a Noisy and Diverse Dataset ](https://arxiv.org/pdf/1906.04087.pdf ), [Landmark2019-1st-and-3rd-Place-Solution ](https://github.com/lyakaap/Landmark2019-1st-and-3rd-Place-Solution ).
2018-05-31 20:39:30 +08:00
2019-12-15 10:35:09 +08:00
## CBIR for Duplicate(copy) detection
2017-05-23 09:04:11 +08:00
2017-12-25 20:49:53 +08:00
- [A Robust and Fast Video Copy Detection System Using Content-Based Fingerprinting ](https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiisbW0maXYAhXLOY8KHUw0AEsQFgg7MAI&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F7b4f%2F68e227999da8ffc6dc9f7fd34da5ebaad09f.pdf&usg=AOvVaw0mZvcT7VhEuEm68oieXLv- )
2019-12-15 10:35:09 +08:00
## Feature Fusion
2017-02-06 09:28:45 +08:00
- [Feature fusion using Canonical Correlation Analysis ](https://github.com/mhaghighat/ccaFuse )
2017-01-04 11:37:50 +08:00
2019-12-15 10:35:09 +08:00
## Instance Matching
2017-09-20 12:06:57 +08:00
2020-07-03 09:54:02 +08:00
- [AdaLAM: Revisiting Handcrafted Outlier Detection ](https://arxiv.org/pdf/2006.04250.pdf ), arxiv 2006.04250.
2018-06-11 20:54:12 +08:00
- [Graph-Cut RANSAC ](https://arxiv.org/abs/1706.00984 ), [code ](https://github.com/danini/graph-cut-ransac )
2017-09-20 14:45:28 +08:00
- [Image Matching Benchmark ](https://arxiv.org/pdf/1709.03917.pdf )
2017-12-01 09:06:50 +08:00
- [GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence ](https://github.com/JiawangBian/GMS-Feature-Matcher )
2017-09-20 12:06:57 +08:00
- [A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval ](https://github.com/vote-and-verify/vote-and-verify )
- [CODE: Coherence Based Decision Boundaries for Feature Correspondence]()
2017-09-20 13:02:37 +08:00
- [Robust feature matching in 2.3µs ](https://www.edwardrosten.com/work/taylor_2009_robust.pdf )
2017-09-20 12:06:57 +08:00
- [PopSift is an implementation of the SIFT algorithm in CUDA ](https://github.com/alicevision/popsift )
- [openMVG robust_estimation ](https://github.com/openMVG/openMVG/tree/e3a0bde5e9c676d1cb663a38f7e74c771324d69a/src/openMVG/robust_estimation )
2019-05-15 23:18:32 +08:00
- [Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses ](https://arxiv.org/pdf/1905.04132v1.pdf ).
2019-10-25 00:05:45 +08:00
- [Homography from two orientation- and scale-covariant features ](https://arxiv.org/pdf/1906.11927.pdf ), [code ](https://github.com/danini/homography-from-sift-features ).
2017-09-20 12:06:57 +08:00
2019-12-15 10:35:09 +08:00
## Semantic Matching
2018-06-19 16:46:43 +08:00
- [End-to-end weakly-supervised semantic alignment ](https://github.com/ignacio-rocco/weakalign )
2020-07-15 00:21:13 +08:00
## Template Matching
- [QATM: Quality-Aware Template Matching For Deep Learning ](https://arxiv.org/pdf/1903.07254.pdf ), CVPR 2019.
2019-12-15 10:35:09 +08:00
## Image Identification
2018-07-18 17:19:20 +08:00
- [Image Identification Using SIFT Algorithm: Performance Analysis against Different Image Deformations ](https://arxiv.org/pdf/1710.02728.pdf )
2019-12-15 10:35:09 +08:00
## Tutorials
2016-11-06 23:28:06 +08:00
2020-05-07 09:43:35 +08:00
- [PyRetri ](https://github.com/PyRetri/PyRetri ), Open source deep learning based image retrieval toolbox based on PyTorch.
2018-06-08 09:45:00 +08:00
- [How to Apply Distance Metric Learning to Street-to-Shop Problem ](https://medium.com/mlreview/how-to-apply-distance-metric-learning-for-street-to-shop-problem-d21247723d2a )
2016-12-19 23:49:56 +08:00
- [Recent Image Search Techniques ](http://cvpr2016.thecvf.com/program/tutorials )
- [Compact Features for Visual Search ](http://cvpr2016.thecvf.com/program/tutorials )
2017-03-08 09:42:27 +08:00
- [multimedia-indexing ](https://github.com/MKLab-ITI/multimedia-indexing ). A framework for large-scale feature extraction, indexing and retrieval.
2018-02-28 09:49:19 +08:00
- [Image Similarity using Deep Ranking ](https://medium.com/@akarshzingade/image-similarity-using-deep-ranking-c1bd83855978 ), [code ](https://github.com/akarshzingade/image-similarity-deep-ranking ).
2018-06-08 09:45:00 +08:00
- [Triplet Loss and Online Triplet Mining in TensorFlow ](https://omoindrot.github.io/triplet-loss )
2019-06-08 23:53:55 +08:00
- [tf_retrieval_baseline ](https://github.com/ahmdtaha/tf_retrieval_baseline ).
2016-11-06 23:28:06 +08:00
2019-12-15 10:35:09 +08:00
## Slide
2018-08-20 09:43:51 +08:00
- [VRG Prague in “Large-Scale Landmark Recognition Challenge” ](https://drive.google.com/file/d/1NFhfkqKjo_bXM-yuI3KbZt_iHRmiUyTG/view ), ranked 3rd in the Google Landmark Recognition Challenge.
2019-12-15 10:35:09 +08:00
## Demo and Demo Online
2018-05-09 16:14:37 +08:00
2018-06-19 16:46:43 +08:00
- [Visual Image Retrieval and Localization ](http://viral.image.ntua.gr/ ), SIFT feature encoded by BOW.
- [VGG Image Search Engine ](https://gitlab.com/vgg/vise ), SIFT feature encoded by BOW.
- [SoTu ](https://github.com/zysite/SoTu ), A flask-based cbir system.
2018-08-07 23:37:27 +08:00
- [yisou ](https://yisou.yuanbin.me/ ), A flask-based painting cbir system, the search algorithm is designed by [Yong Yuan ](http://yongyuan.name/ ).
2019-03-10 12:37:23 +08:00
2019-12-15 10:35:09 +08:00
## Datasets
2019-03-10 12:37:23 +08:00
- [DeepFashion2 Dataset ](https://github.com/switchablenorms/DeepFashion2 ), DeepFashion2 is a comprehensive fashion dataset.
2018-08-07 23:37:27 +08:00
2019-12-15 10:35:09 +08:00
## Useful Package
2016-11-06 23:28:06 +08:00
2017-11-14 19:10:13 -06:00
- [VLFeat ](http://www.vlfeat.org/ )
- [Yael ](http://yael.gforge.inria.fr/ )