- [Object retrieval with large vocabularies and fast spatial matching](https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf), CVPR 2007.
- [Visual Categorization with Bags of Keypoints](http://www.cs.princeton.edu/courses/archive/fall09/cos429/papers/csurka-eccv-04.pdf), ECCV 2004.
- [ORB: an efficient alternative to SIFT or SURF](https://www.willowgarage.com/sites/default/files/orb_final.pdf), ICCV 2011.
- [Object Recognition from Local Scale-Invariant Features](http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf), ICCV 1999.
- [Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval](https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf), ICCV 2007.
- [Three things everyone should know to improve object retrieval](https://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf), CVPR 2012.
- [On-the-fly learning for visual search of large-scale image and video datasets](https://www.robots.ox.ac.uk/~vgg/publications/2015/Chatfield15/chatfield15.pdf)
- [Aggregating localdescriptors into a compact image representation](https://lear.inrialpes.fr/pubs/2010/JDSP10/jegou_compactimagerepresentation.pdf), CVPR 2010.
- [More About VLAD: A Leap from Euclidean to Riemannian Manifolds](https://paperswithcode.com/paper/more-about-vlad-a-leap-from-euclidean-to), CVPR 2015.
- [Hamming embedding and weak geometric consistency for large scale image search](https://lear.inrialpes.fr/pubs/2008/JDS08/jegou_hewgc08.pdf), CVPR 2008.
- [A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval](https://www.microsoft.com/en-us/research/uploads/prod/2019/09/accv_2016_schoenberger.pdf), ACCV 2016.
- [Triangulation embedding and democratic aggregation for image search](https://www.robots.ox.ac.uk/~vgg/publications/2014/Jegou14/jegou14.pdf), CVPR 2014.
- [Cross-dimensional Weighting for Aggregated Deep Convolutional Features](https://arxiv.org/abs/1512.04065), [project](https://github.com/yahoo/crow).
- [Class-Weighted Convolutional Features for Image Retrieval](https://github.com/imatge-upc/retrieval-2017-cam).
- [Multi-Scale Orderless Pooling of Deep Convolutional Activation Features](), VLAD coding.
- [Aggregating Deep Convolutional Features for Image Retrieval](https://arxiv.org/abs/1510.07493), [论文笔记](https://zhuanlan.zhihu.com/p/23136747), [基于深度学习的视觉实例搜索研究进展](https://zhuanlan.zhihu.com/p/22265265).
- [Particular object retrieval with integral max-pooling of CNN activations](https://arxiv.org/abs/1511.05879), [project](http://cmp.felk.cvut.cz/~toliageo/soft.html).
- [Particular object retrieval using CNN](https://github.com/AaltoVision/Object-Retrieval).
- [Regional Attention Based Deep Feature for Image Retrieval](https://sglab.kaist.ac.kr/RegionalAttention/), [code](https://github.com/jaeyoon1603/Retrieval-RegionalAttention), BMVC 2018.
- Glue Factory is CVG's library for training and evaluating deep neural network that extract and match local visual feature, [code](https://github.com/cvg/glue-factory)
- DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local Feature Matching, arXiv 2023, [code](https://github.com/Parskatt/DeDoDe).
- [Learning and aggregating deep local descriptors for instance-level recognition](https://arxiv.org/abs/2007.13172), ECCV 2020, [code](https://github.com/gtolias/how).
- [DISK: Learning local features with policy gradient](https://arxiv.org/pdf/2006.13566.pdf), NeurIPS 2020, [code](https://github.com/cvlab-epfl/disk).
- [Learning and aggregating deep local descriptorsfor instance-level recognition](https://paperswithcode.com/paper/learning-and-aggregating-deep-local/review/), ECCV 2020, [code](https://github.com/jenicek/asmk).
- [UR2KiD: Unifying Retrieval, Keypoint Detection, and Keypoint Description without Local Correspondence Supervision](https://arxiv.org/abs/2001.07252), arxiv.
- [Beyond Cartesian Representations for Local Descriptors](https://arxiv.org/abs/1908.05547), [code](https://github.com/cvlab-epfl/log-polar-descriptors), ICCV 2019.
- [Learning Discriminative Affine Regions via Discriminability](http://cn.arxiv.org/pdf/1711.06704.pdf), [affnet](https://github.com/ducha-aiki/affnet).
- [A Large Dataset for Improving Patch Matching](http://cn.arxiv.org/pdf/1801.01466.pdf), [PS-Dataset](https://github.com/rmitra/PS-Dataset).
- [Working hard to know your neighbor's margins: Local descriptor learning loss](), [code](https://github.com/DagnyT/hardnet).
- [MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching](), [code](https://github.com/hanxf/matchnet).
- [Local Descriptors Optimized for Average Precision](http://openaccess.thecvf.com/content_cvpr_2018/papers/He_Local_Descriptors_Optimized_CVPR_2018_paper.pdf), CVPR 2018.
- [SuperPoint: Self-Supervised Interest Point Detection and Description](http://cn.arxiv.org/pdf/1712.07629.pdf), Magic Leap.
- [Results of the NeurIPS’21 Challenge on Billion-Scale Approximate Nearest Neighbor Search](https://proceedings.mlr.press/v176/simhadri22a/simhadri22a.pdf).
- [RobustiQ A Robust ANN Search Method for Billion-scale Similarity Search on GPUs](http://users.monash.edu/~yli/assets/pdf/icmr19-sigconf.pdf), ICMR 2019.
- [Practical and Optimal LSH for Angular Distance](chrome-extension://ikhdkkncnoglghljlkmcimlnlhkeamad/pdf-viewer/web/viewer.html?file=http%3A%2F%2Fpapers.nips.cc%2Fpaper%2F5893-practical-and-optimal-lsh-for-angular-distance.pdf).
- [lopq](https://github.com/yahoo/lopq). Training of Locally Optimized Product Quantization (LOPQ) models for approximate nearest neighbor search of high dimensional data in Python and Spark.
- [nns_benchmark](https://github.com/DBWangGroupUNSW/nns_benchmark). Benchmark of Nearest Neighbor Search on High Dimensional Data.
- [NMSLIB](https://github.com/searchivarius/nmslib). Non-Metric Space Library (NMSLIB): A similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.
- [Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs](https://github.com/nmslib/hnsw), graph-based method.
- [NV-tree: A Scalable Disk-Based High-Dimensional Index](https://en.ru.is/media/skjol-td/PhDHerwig.pdf).
- [Dynamicity and Durability in Scalable Visual Instance Search](https://arxiv.org/abs/1805.10942).
- [Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors](https://arxiv.org/abs/1802.02422),[code](https://github.com/dbaranchuk/ivf-hnsw).
- [Link and code: Fast indexing with graphs and compact regression codes](https://arxiv.org/abs/1804.09996).
- [A Survey of Product Quantization](https://www.jstage.jst.go.jp/article/mta/6/1/6_2/_pdf/),对于矢量量化方法一篇比较完整的调研,值得一读.
- [GeoDesc: Learning Local Descriptors by Integrating Geometry Constraints](https://arxiv.org/abs/1807.06294),学习局部特征的descriptor,匹配能力较强.
- [Learning a Complete Image Indexing Pipeline](https://arxiv.org/pdf/1712.04480.pdf), CVPR 2018.
- [Videntifier](http://videntifier.com/) is a visual search engine based on a patented large-scale local feature database, [demo](http://flickrdemo.videntifier.com/), based on SIFT feature and NV-tree. ([Chinese blog post](https://yongyuan.name/blog/videntifier-and-nv-tree.html)).
- [Web-Scale Responsive Visual Search at Bing](https://arxiv.org/abs/1802.04914).
- [Visual Search at Alibaba](https://dl.acm.org/citation.cfm?id=3219819.3219820).
- [Visual Search at Pinterest](https://labs.pinterest.com/user/themes/pinlabs/assets/paper/visual_search_at_pinterest.pdf).
- [Visual Discovery at Pinterest](https://arxiv.org/abs/1702.04680).
- [Deep Learning based Large Scale Visual Recommendation and Search for E-Commerce](https://arxiv.org/abs/1703.02344), [project](https://github.com/flipkart-incubator/fk-visual-search).
- [Large-scale Landmark Retrieval/Recognition under a Noisy and Diverse Dataset](https://arxiv.org/pdf/1906.04087.pdf), [Landmark2019-1st-and-3rd-Place-Solution](https://github.com/lyakaap/Landmark2019-1st-and-3rd-Place-Solution).
- [A Robust and Fast Video Copy Detection System Using Content-Based Fingerprinting](https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiisbW0maXYAhXLOY8KHUw0AEsQFgg7MAI&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F7b4f%2F68e227999da8ffc6dc9f7fd34da5ebaad09f.pdf&usg=AOvVaw0mZvcT7VhEuEm68oieXLv-).
- [Neural- Guided RANSAC: Learning Where to Sample Model Hypotheses](https://openaccess.thecvf.com/content_ICCV_2019/papers/Brachmann_Neural-Guided_RANSAC_Learning_Where_to_Sample_Model_Hypotheses_ICCV_2019_paper.pdf), ICCV 2019, [code](https://github.com/vislearn/ngransac).
- [Homography from two orientation- and scale-covariant features](https://arxiv.org/pdf/1906.11927.pdf), [code](https://github.com/danini/homography-from-sift-features).
- [How to Apply Distance Metric Learning to Street-to-Shop Problem](https://medium.com/mlreview/how-to-apply-distance-metric-learning-for-street-to-shop-problem-d21247723d2a).
- [Image Similarity using Deep Ranking](https://medium.com/@akarshzingade/image-similarity-using-deep-ranking-c1bd83855978), [code](https://github.com/akarshzingade/image-similarity-deep-ranking).
- [VRG Prague in “Large-Scale Landmark Recognition Challenge”](https://drive.google.com/file/d/1NFhfkqKjo_bXM-yuI3KbZt_iHRmiUyTG/view), ranked 3rd in the Google Landmark Recognition Challenge.
- [Holidays](https://rd.springer.com/chapter/10.1007/978-3-540-88682-2_24), Holidays consists images from personal holiday albums of various scene types.
- [Oxford](https://ieeexplore.ieee.org/document/4270197), Oxford consists of 11 different Oxford landmarks.
- [Paris](https://ieeexplore.ieee.org/abstract/document/4587635/), Paris consists of images crawled from 11 queries on specific Paris architecture.
- [ROxford and RParis](https://openaccess.thecvf.com/content_cvpr_2018/html/Radenovic_Revisiting_Oxford_and_CVPR_2018_paper.html), ROxford and RParis are revisited versions of the original Oxford and Paris with annotation corrections, enlarged sizes and more difficult samples.
- [INSTRE](https://dl.acm.org/doi/abs/10.1145/2700292), INSTRE is an instance-level object retrieval dataset.
[](https://star-history.com/#willard-yuan/awesome-cbir-papers&Date)