diff --git a/README.md b/README.md index ffc1640..f16dfd7 100644 --- a/README.md +++ b/README.md @@ -12,23 +12,27 @@ The main goal is collect classical and solid work of image retrieval in academia [![Awesome](https://awesome.re/badge.svg)](https://awesome.re) -- [Classical Local Feature](#Classical-Local-Feature) -- [Deep Learning Feature (Global Feature)](#Deep-Learning-Feature-(Global-Feature)) -- [Deep Learning Feature (Local Feature)](#Deep-Learning-Feature-(Local-Feature)) -- [Cross Model Retrieval (Cross Model Retrieval)](#Cross-Model-Retrieval-(Cross-Model-Retrieval)) -- [ANN search](#ANN-search) -- [CBIR rank](#CBIR-rank) -- [CBIR in Industry](#CBIR-in-Industry) -- [CBIR Competition and Challenge](#CBIR-Competition-and-Challenge) -- [CBIR for Duplicate(copy) detection](#CBIR-for-Duplicate(copy)-detection) -- [Feature Fusion](#Feature-Fusion) -- [Instance Matching](#Instance-Matching) -- [Semantic Matching](#Semantic-Matching) -- [Image Identification](#Image-Identification) -- [Tutorials](#Tutorials) -- [Demo and Demo Online](#Demo-and-Demo-Online) -- [Datasets](#Datasets) -- [Useful Package](#Useful-Package) +- [Classical Local Feature](#classical-local-feature) +- [Deep Learning Feature (Global Feature)](#deep-learning-feature-global-feature) +- [Deep Learning Feature (Local Feature)](#deep-learning-feature-local-feature) +- [Deep Learning Feature (Instance Search)](#deep-learning-feature-instance-search) +- [Cross Modal Retrieval](#cross-modal-retrieval) +- [ANN search](#ann-search) +- [CBIR Attack](#cbir-attack) +- [CBIR rank](#cbir-rank) +- [CBIR in Industry](#cbir-in-industry) +- [CBIR Competition and Challenge](#cbir-competition-and-challenge) +- [CBIR for Duplicate(copy) detection](#cbir-for-duplicatecopy-detection) +- [Feature Fusion](#feature-fusion) +- [Instance Matching](#instance-matching) +- [Semantic Matching](#semantic-matching) +- [Template Matching](#template-matching) +- [Image Identification](#image-identification) +- [Tutorials](#tutorials) +- [Slide](#slide) +- [Demo and Demo Online](#demo-and-demo-online) +- [Datasets](#datasets) +- [Useful Package](#useful-package) ## Classical Local Feature @@ -64,7 +68,7 @@ The main goal is collect classical and solid work of image retrieval in academia - [End-to-end Learning of Deep Visual Representations for Image retrieval](https://arxiv.org/abs/1610.07940), DIR更详细的论文说明 - [What Is the Best Practice for CNNs Applied to Visual Instance Retrieval?](https://arxiv.org/abs/1611.01640), 关于layer选取的问题 - [Bags of Local Convolutional Features for Scalable Instance Search](https://arxiv.org/abs/1604.01325) -- [Faster R-CNN Features for Instance Search](https://github.com/imatge-upc/retrieval-2016-deepvision) +- [Faster R-CNN Features for Instance Search](https://github.com/imatge-upc/retrieval-2016-deepvision), CVPR workshop 2016. - [Cross-dimensional Weighting for Aggregated Deep Convolutional Features](https://arxiv.org/abs/1512.04065), [project](https://github.com/yahoo/crow) - [Class-Weighted Convolutional Features for Image Retrieval](https://github.com/imatge-upc/retrieval-2017-cam) - [Multi-Scale Orderless Pooling of Deep Convolutional Activation Features](), VLAD coding @@ -74,13 +78,13 @@ The main goal is collect classical and solid work of image retrieval in academia - [Learning to Match Aerial Images with Deep Attentive Architectures](https://vision.cornell.edu/se3/wp-content/uploads/2016/04/1204.pdf). - [Siamese Network of Deep Fisher-Vector Descriptors for Image Retrieval](https://arxiv.org/pdf/1702.00338v1.pdf) - [Combining Fisher Vector and Convolutional Neural Networks for Image Retrieval](http://ceur-ws.org/Vol-1653/paper_19.pdf), fv和cnn特征融合提升 -- [Selective Deep Convolutional Features for Image Retrieval](https://arxiv.org/pdf/1707.00809v1.pdf) +- [Selective Deep Convolutional Features for Image Retrieval](https://arxiv.org/pdf/1707.00809v1.pdf), ACM MM 2017. - [Class-Weighted Convolutional Features for Image Retrieval](https://github.com/imatge-upc/retrieval-2017-cam) - [Towards Good Practices for Image Retrieval Based on CNN Features]() -- [Fine-tuning CNN Image Retrieval with No Human Annotation](https://arxiv.org/abs/1711.02512) +- [Fine-tuning CNN Image Retrieval with No Human Annotation](https://arxiv.org/abs/1711.02512), PAMI 2018. - [An accurate retrieval through R-MAC+ descriptors for landmark recognition](https://arxiv.org/pdf/1806.08565.pdf) - [Regional Attention Based Deep Feature for Image Retrieval](https://sglab.kaist.ac.kr/RegionalAttention/), [code](https://github.com/jaeyoon1603/Retrieval-RegionalAttention), BMVC 2018. -- [Detect-to-Retrieve: Efficient Regional Aggregation for Image Search](https://arxiv.org/pdf/1812.01584.pdf), arxiv. +- [Detect-to-Retrieve: Efficient Regional Aggregation for Image Search](https://arxiv.org/pdf/1812.01584.pdf), CVPR 2019. - [Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking](http://cmp.felk.cvut.cz/~toliageo/p/RadenovicIscenToliasAvrithisChum_CVPR2018_Revisiting%20Oxford%20and%20Paris:%20Large-Scale%20Image%20Retrieval%20Benchmarking.pdf), [project](http://cmp.felk.cvut.cz/revisitop/), CVPR 2018. - [Guided Similarity Separation for Image Retrieval](https://github.com/layer6ai-labs/GSS), NeurIPS 2019. @@ -89,7 +93,7 @@ The main goal is collect classical and solid work of image retrieval in academia - [DISK: Learning local features with policy gradient](https://arxiv.org/pdf/2006.13566.pdf), arxiv 2006.13566. - [D2D: Keypoint Extraction with Describe to Detect Approach](https://arxiv.org/pdf/2005.13605.pdf), arxiv 2020. - [UR2KiD: Unifying Retrieval, Keypoint Detection, and Keypoint Description without Local Correspondence Supervision](https://arxiv.org/abs/2001.07252), arxiv. -- [Visualizing Deep Similarity Networks](https://arxiv.org/pdf/1901.00536.pdf). +- [Visualizing Deep Similarity Networks](https://arxiv.org/pdf/1901.00536.pdf), WACV 2019. - [Combination of Multiple Global Descriptors for Image Retrieval](https://github.com/naver/cgd). - [Beyond Cartesian Representations for Local Descriptors](https://arxiv.org/abs/1908.05547), [code](https://github.com/cvlab-epfl/log-polar-descriptors), ICCV 2019. - [R2D2: Reliable and Repeatable Detector and Descriptor](https://arxiv.org/abs/1906.06195), [R2D2](https://github.com/naver/r2d2), NeurIPS 2019. @@ -106,8 +110,16 @@ The main goal is collect classical and solid work of image retrieval in academia - [SuperPoint: Self-Supervised Interest Point Detection and Description](http://cn.arxiv.org/pdf/1712.07629.pdf), Magic Leap - [GeoDesc: Learning Local Descriptors by Integrating Geometry Constraints](https://arxiv.org/pdf/1807.06294.pdf), [code](https://github.com/lzx551402/geodesc), ECCV 2018. - [Learning local feature descriptors with triplets and shallow convolutional neural networks](https://github.com/vbalnt/tfeat), BMVC 2016. + -## Cross Model Retrieval +## Deep Learning Feature (Instance Search) +- [Faster R-CNN Features for Instance Search](https://github.com/imatge-upc/retrieval-2016-deepvision), CVPR workshop 2016 +- [Instance Search via Instance Level Segmentation and Feature Representation](https://arxiv.org/abs/1806.03576), arXiv 2018 +- [Unsupervised object discovery for instance recognition](https://doi.org/10.1109/WACV.2018.00194), WACV 2018 +- [Instance search based on weakly supervised feature learning](https://doi.org/10.1016/j.neucom.2019.11.029), Neurocomputing 2019 +- [Deeply Activated Salient Region for Instance Search](https://arxiv.org/abs/2002.00185), arXiv 2020 + +## Cross Modal Retrieval - [Composing Text and Image for Image Retrieval - An Empirical Odyssey](https://arxiv.org/pdf/1812.07119.pdf)