Add object discovery based CBIR methods; Update infos.
parent
e824ae39be
commit
4270440f2b
52
README.md
52
README.md
|
@ -12,23 +12,27 @@ The main goal is collect classical and solid work of image retrieval in academia
|
|||
|
||||
[](https://awesome.re)
|
||||
|
||||
- [Classical Local Feature](#Classical-Local-Feature)
|
||||
- [Deep Learning Feature (Global Feature)](#Deep-Learning-Feature-(Global-Feature))
|
||||
- [Deep Learning Feature (Local Feature)](#Deep-Learning-Feature-(Local-Feature))
|
||||
- [Cross Model Retrieval (Cross Model Retrieval)](#Cross-Model-Retrieval-(Cross-Model-Retrieval))
|
||||
- [ANN search](#ANN-search)
|
||||
- [CBIR rank](#CBIR-rank)
|
||||
- [CBIR in Industry](#CBIR-in-Industry)
|
||||
- [CBIR Competition and Challenge](#CBIR-Competition-and-Challenge)
|
||||
- [CBIR for Duplicate(copy) detection](#CBIR-for-Duplicate(copy)-detection)
|
||||
- [Feature Fusion](#Feature-Fusion)
|
||||
- [Instance Matching](#Instance-Matching)
|
||||
- [Semantic Matching](#Semantic-Matching)
|
||||
- [Image Identification](#Image-Identification)
|
||||
- [Tutorials](#Tutorials)
|
||||
- [Demo and Demo Online](#Demo-and-Demo-Online)
|
||||
- [Datasets](#Datasets)
|
||||
- [Useful Package](#Useful-Package)
|
||||
- [Classical Local Feature](#classical-local-feature)
|
||||
- [Deep Learning Feature (Global Feature)](#deep-learning-feature-global-feature)
|
||||
- [Deep Learning Feature (Local Feature)](#deep-learning-feature-local-feature)
|
||||
- [Deep Learning Feature (Object discovery based)](#deep-learning-feature-object-discovery-based)
|
||||
- [Cross Modal Retrieval](#cross-modal-retrieval)
|
||||
- [ANN search](#ann-search)
|
||||
- [CBIR Attack](#cbir-attack)
|
||||
- [CBIR rank](#cbir-rank)
|
||||
- [CBIR in Industry](#cbir-in-industry)
|
||||
- [CBIR Competition and Challenge](#cbir-competition-and-challenge)
|
||||
- [CBIR for Duplicate(copy) detection](#cbir-for-duplicatecopy-detection)
|
||||
- [Feature Fusion](#feature-fusion)
|
||||
- [Instance Matching](#instance-matching)
|
||||
- [Semantic Matching](#semantic-matching)
|
||||
- [Template Matching](#template-matching)
|
||||
- [Image Identification](#image-identification)
|
||||
- [Tutorials](#tutorials)
|
||||
- [Slide](#slide)
|
||||
- [Demo and Demo Online](#demo-and-demo-online)
|
||||
- [Datasets](#datasets)
|
||||
- [Useful Package](#useful-package)
|
||||
|
||||
## Classical Local Feature
|
||||
|
||||
|
@ -64,7 +68,7 @@ The main goal is collect classical and solid work of image retrieval in academia
|
|||
- [End-to-end Learning of Deep Visual Representations for Image retrieval](https://arxiv.org/abs/1610.07940), DIR更详细的论文说明
|
||||
- [What Is the Best Practice for CNNs Applied to Visual Instance Retrieval?](https://arxiv.org/abs/1611.01640), 关于layer选取的问题
|
||||
- [Bags of Local Convolutional Features for Scalable Instance Search](https://arxiv.org/abs/1604.01325)
|
||||
- [Faster R-CNN Features for Instance Search](https://github.com/imatge-upc/retrieval-2016-deepvision)
|
||||
- [Faster R-CNN Features for Instance Search](https://github.com/imatge-upc/retrieval-2016-deepvision), CVPR workshop 2016
|
||||
- [Cross-dimensional Weighting for Aggregated Deep Convolutional Features](https://arxiv.org/abs/1512.04065), [project](https://github.com/yahoo/crow)
|
||||
- [Class-Weighted Convolutional Features for Image Retrieval](https://github.com/imatge-upc/retrieval-2017-cam)
|
||||
- [Multi-Scale Orderless Pooling of Deep Convolutional Activation Features](), VLAD coding
|
||||
|
@ -80,7 +84,7 @@ The main goal is collect classical and solid work of image retrieval in academia
|
|||
- [Fine-tuning CNN Image Retrieval with No Human Annotation](https://arxiv.org/abs/1711.02512)
|
||||
- [An accurate retrieval through R-MAC+ descriptors for landmark recognition](https://arxiv.org/pdf/1806.08565.pdf)
|
||||
- [Regional Attention Based Deep Feature for Image Retrieval](https://sglab.kaist.ac.kr/RegionalAttention/), [code](https://github.com/jaeyoon1603/Retrieval-RegionalAttention), BMVC 2018.
|
||||
- [Detect-to-Retrieve: Efficient Regional Aggregation for Image Search](https://arxiv.org/pdf/1812.01584.pdf), arxiv.
|
||||
- [Detect-to-Retrieve: Efficient Regional Aggregation for Image Search](https://arxiv.org/pdf/1812.01584.pdf), CVPR 2019.
|
||||
- [Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking](http://cmp.felk.cvut.cz/~toliageo/p/RadenovicIscenToliasAvrithisChum_CVPR2018_Revisiting%20Oxford%20and%20Paris:%20Large-Scale%20Image%20Retrieval%20Benchmarking.pdf), [project](http://cmp.felk.cvut.cz/revisitop/), CVPR 2018.
|
||||
- [Guided Similarity Separation for Image Retrieval](https://github.com/layer6ai-labs/GSS), NeurIPS 2019.
|
||||
|
||||
|
@ -106,8 +110,16 @@ The main goal is collect classical and solid work of image retrieval in academia
|
|||
- [SuperPoint: Self-Supervised Interest Point Detection and Description](http://cn.arxiv.org/pdf/1712.07629.pdf), Magic Leap
|
||||
- [GeoDesc: Learning Local Descriptors by Integrating Geometry Constraints](https://arxiv.org/pdf/1807.06294.pdf), [code](https://github.com/lzx551402/geodesc), ECCV 2018.
|
||||
- [Learning local feature descriptors with triplets and shallow convolutional neural networks](https://github.com/vbalnt/tfeat), BMVC 2016.
|
||||
|
||||
|
||||
## Cross Model Retrieval
|
||||
## Deep Learning Feature (Object discovery based)
|
||||
- [Faster R-CNN Features for Instance Search](https://github.com/imatge-upc/retrieval-2016-deepvision), CVPR workshop 2016
|
||||
- [Instance Search via Instance Level Segmentation and Feature Representation](https://arxiv.org/abs/1806.03576), arXiv 2018
|
||||
- [Unsupervised object discovery for instance recognition](https://doi.org/10.1109/WACV.2018.00194), WACV 2018
|
||||
- [Instance search based on weakly supervised feature learning](https://doi.org/10.1016/j.neucom.2019.11.029), Neurocomputing 2019
|
||||
- [Deeply Activated Salient Region for Instance Search](https://arxiv.org/abs/2002.00185), arXiv 2020
|
||||
|
||||
## Cross Modal Retrieval
|
||||
|
||||
- [Composing Text and Image for Image Retrieval - An Empirical Odyssey](https://arxiv.org/pdf/1812.07119.pdf)
|
||||
|
||||
|
|
Loading…
Reference in New Issue