new cbir paper added
parent
a99ca394f8
commit
e1c17fa4fb
|
@ -19,6 +19,7 @@
|
|||
- [Bags of Local Convolutional Features for Scalable Instance Search](https://arxiv.org/abs/1604.01325)
|
||||
- [Faster R-CNN Features for Instance Search](https://github.com/imatge-upc/retrieval-2016-deepvision)
|
||||
- [Cross-dimensional Weighting for Aggregated Deep Convolutional Features](https://arxiv.org/abs/1512.04065), [project](https://github.com/yahoo/crow)
|
||||
- [Class-Weighted Convolutional Features for Image Retrieval](https://github.com/imatge-upc/retrieval-2017-cam)
|
||||
- [Multi-Scale Orderless Pooling of Deep Convolutional Activation Features](), VLAD coding
|
||||
- [Aggregating Deep Convolutional Features for Image Retrieval](https://arxiv.org/abs/1510.07493), [论文笔记](https://zhuanlan.zhihu.com/p/23136747), [基于深度学习的视觉实例搜索研究进展](https://zhuanlan.zhihu.com/p/22265265).
|
||||
- [Particular object retrieval with integral max-pooling of CNN activations](https://arxiv.org/abs/1511.05879), [project](http://cmp.felk.cvut.cz/~toliageo/soft.html)
|
||||
|
@ -26,6 +27,7 @@
|
|||
- [Learning to Match Aerial Images with Deep Attentive Architectures](https://vision.cornell.edu/se3/wp-content/uploads/2016/04/1204.pdf).
|
||||
- [Siamese Network of Deep Fisher-Vector Descriptors for Image Retrieval](https://arxiv.org/pdf/1702.00338v1.pdf)
|
||||
- [Combining Fisher Vector and Convolutional Neural Networks for Image Retrieval](http://ceur-ws.org/Vol-1653/paper_19.pdf), fv和cnn特征融合提升
|
||||
- [Selective Deep Convolutional Features for Image Retrieval](https://arxiv.org/pdf/1707.00809v1.pdf)
|
||||
|
||||
#### ANN search
|
||||
|
||||
|
|
Loading…
Reference in New Issue