codon/docs/interop/decorator.md

199 lines
5.4 KiB
Markdown
Raw Normal View History

Codon includes a Python package called `codon` that allows
functions or methods within Python codebases to be compiled and
executed by Codon's JIT. The `codon` library can be installed
2022-12-14 06:22:30 +08:00
with `pip`:
```bash
2022-12-14 06:22:30 +08:00
pip install codon-jit
```
2022-12-14 06:22:30 +08:00
This library will attempt to use an installed version of Codon.
If Codon is installed at a non-standard path, set the `CODON_DIR`
environment variable to the installation path.
# Using `@codon.jit`
The `@codon.jit` decorator causes the annotated function to be
compiled by Codon, and automatically converts standard Python
objects to native Codon objects. For example:
```python
import codon
from time import time
def is_prime_python(n):
if n <= 1:
return False
for i in range(2, n):
if n % i == 0:
return False
return True
@codon.jit
def is_prime_codon(n):
if n <= 1:
return False
for i in range(2, n):
if n % i == 0:
return False
return True
t0 = time()
ans = sum(1 for i in range(100000, 200000) if is_prime_python(i))
t1 = time()
print(f'[python] {ans} | took {t1 - t0} seconds')
t0 = time()
ans = sum(1 for i in range(100000, 200000) if is_prime_codon(i))
t1 = time()
print(f'[codon] {ans} | took {t1 - t0} seconds')
```
outputs:
```
[python] 8392 | took 39.6610209941864 seconds
[codon] 8392 | took 0.998633861541748 seconds
```
{% hint style="info" %}
`@par` (to parallelize `for`-loops) can be used in annotated functions
via a leading underscore: `_@par`.
{% endhint %}
{% hint style="warning" %}
Changes made to objects in a JIT'd function will not be reflected
in the host Python application, since objects passed to Codon are
*converted* to Codon-native types. If objects need to be modified,
consider returning any necessary values and performing modifications
in Python.
{% endhint %}
Dynamic Polymorphism (#58) * Use Static[] for static inheritance * Support .seq extension * Fix #36 * Polymorphic typechecking; vtables [wip] * v-table dispatch [wip] * vtable routing [wip; bug] * vtable routing [MVP] * Fix texts * Add union type support * Update FAQs * Clarify * Add BSL license * Add makeUnion * Add IR UnionType * Update union representation in LLVM * Update README * Update README.md * Update README * Update README.md * Add benchmarks * Add more benchmarks and README * Add primes benchmark * Update benchmarks * Fix cpp * Clean up list * Update faq.md * Add binary trees benchmark * Add fannkuch benchmark * Fix paths * Add PyPy * Abort on fail * More benchmarks * Add cpp word_count * Update set_partition cpp * Add nbody cpp * Add TAQ cpp; fix word_count timing * Update CODEOWNERS * Update README * Update README.md * Update CODEOWNERS * Fix bench script * Update binary_trees.cpp * Update taq.cpp * Fix primes benchmark * Add mandelbrot benchmark * Fix OpenMP init * Add Module::unsafeGetUnionType * UnionType [wip] [skip ci] * Integrate IR unions and Union * UnionType refactor [skip ci] * Update README.md * Update docs * UnionType [wip] [skip ci] * UnionType and automatic unions * Add Slack * Update faq.md * Refactor types * New error reporting [wip] * New error reporting [wip] * peglib updates [wip] [skip_ci] * Fix parsing issues * Fix parsing issues * Fix error reporting issues * Make sure random module matches Python * Update releases.md * Fix tests * Fix #59 * Fix #57 * Fix #50 * Fix #49 * Fix #26; Fix #51; Fix #47; Fix #49 * Fix collection extension methods * Fix #62 * Handle *args/**kwargs with Callable[]; Fix #43 * Fix #43 * Fix Ptr.__sub__; Fix polymorphism issues * Add typeinfo * clang-format * Upgrade fmtlib to v9; Use CPM for fmtlib; format spec support; __format__ support * Use CPM for semver and toml++ * Remove extension check * Revamp str methods * Update str.zfill * Fix thunk crashes [wip] [skip_ci] * Fix str.__reversed__ * Fix count_with_max * Fix vtable memory allocation issues * Add poly AST tests * Use PDQsort when stability does not matter * Fix dotted imports; Fix issues * Fix kwargs passing to Python * Fix #61 * Fix #37 * Add isinstance support for unions; Union methods return Union type if different * clang-format * Nicely format error tracebacks * Fix build issues; clang-format * Fix OpenMP init * Fix OpenMP init * Update README.md * Fix tests * Update license [skip ci] * Update license [ci skip] * Add copyright header to all source files * Fix super(); Fix error recovery in ClassStmt * Clean up whitespace [ci skip] * Use Python 3.9 on CI * Print info in random test * Fix single unions * Update random_test.codon * Fix polymorhic thunk instantiation * Fix random test * Add operator.attrgetter and operator.methodcaller * Add code documentation * Update documentation * Update README.md * Fix tests * Fix random init Co-authored-by: A. R. Shajii <ars@ars.me>
2022-12-05 08:45:21 +08:00
{% hint style="warning" %}
Polymorphism and inheritance are not yet supported in JIT mode.
{% endhint %}
# Type conversions
`@codon.jit` will attempt to convert any Python types that it can
to native Codon types. The current conversion rules are as follows:
- Basic types like `int`, `float`, `bool`, `str` and `complex` are
converted to the same type in Codon.
- Tuples are converted to Codon tuples (which are then compiled
down to the equivalent of C structs).
- Collection types like `list`, `dict` and `set` are converted to
the corresponding Codon collection type, with the restriction
that all elements in the collection must have the same type.
- Other types are passed to Codon directly as Python objects.
Codon will then use its Python object API ("`pyobj`") to handle
and operate on these objects. Internally, this consists of calling
the appropriate CPython C API functions, e.g. `PyNumber_Add(a, b)`
for `a + b`.
## Custom types
User-defined classes can be converted to Codon classes via `@codon.convert`:
```python
import codon
@codon.convert
class Foo:
__slots__ = 'a', 'b', 'c'
def __init__(self, n):
self.a = n
self.b = n**2
self.c = n**3
@codon.jit
def total(self):
return self.a + self.b + self.c
print(Foo(10).total()) # 1110
```
`@codon.convert` requires the annotated class to specify `__slots__`, which
it uses to construct a generic Codon class (specifically, a named tuple) to
store the class's converted fields.
# Passing globals to Codon
Global variables, functions or modules can be passed to JIT'd functions through
the `pyvars` argument to `@codon.jit`:
``` python
import codon
def foo(n):
print(f'n is {n}')
@codon.jit(pyvars=['foo'])
def bar(n):
foo(n) # calls the Python function 'foo'
return n ** 2
print(bar(9)) # 'n is 9' then '81'
```
This also allows imported Python modules to be accessed by Codon. All `pyvars`
are passed as Python objects. Note that JIT'd functions can call each other
by default.
{% hint style="info" %}
`pyvars` takes in variable names as strings, not the variables themselves.
{% endhint %}
# Debugging
`@codon.jit` takes an optional `debug` parameter that can be used to print debug
information such as generated Codon functions and data types:
``` python
import codon
@codon.jit(debug=True)
def sum_of_squares(v):
return sum(i**2 for i in v)
print(sum_of_squares([1.4, 2.9, 3.14]))
```
outputs:
```
[codon::jit::execute] code:
def sum_of_squares(v):
return sum(i**2 for i in v)
-----
[python] sum_of_squares(['List[float]'])
[codon::jit::executePython] wrapper:
@export
def __codon_wrapped__sum_of_squares_0(args: cobj) -> cobj:
a0 = List[float].__from_py__(PyTuple_GetItem(args, 0))
return sum_of_squares(a0).__to_py__()
-----
20.229599999999998
```
# Internals and performance tips
Under the hood, the `codon` module maintains an instance of the Codon JIT,
which it uses to dynamically compile annotated Python functions. These functions
are then wrapped in *another* generated function that performs the type conversions.
The JIT maintains a cache of native function pointers corresponding to annotated
Python functions with concrete input types. Hence, calling a JIT'd function
multiple times does not repeatedly invoke the entire Codon compiler pipeline,
but instead reuses the cached function pointer.
Although object conversions from Python to Codon are generally cheap, they do
impose a small overhead, meaning **`@codon.jit` will work best on expensive and/or
long-running operations** rather than short-lived operations. By the same token,
**the more work can be done in Codon, the better,** as opposed to repeatedly
transferring back and forth.