@extend class str: # Magic methods def __hash__(self): h = 0 p, n = self.ptr, self.len i = 0 while i < n: h = 31*h + int(p[i]) i += 1 return h def __lt__(self, other: str): return self._cmp(other) < 0 def __le__(self, other: str): return self._cmp(other) <= 0 def __gt__(self, other: str): return self._cmp(other) > 0 def __ge__(self, other: str): return self._cmp(other) >= 0 def __repr__(self): v = List[str](len(self) + 2) q, qe = "'", "\\'" found_single = False found_double = False for c in self: if c == "'": found_single = True elif c == '"': found_double = True if found_single and not found_double: q, qe = '"', '\\"' v.append(q) for c in self: d = c if c == '\n': d = "\\n" elif c == '\r': d = "\\r" elif c == '\t': d = "\\t" elif c == '\\': d = "\\\\" elif c == q: d = qe else: b = int(c.ptr[0]) if not (32 <= b <= 126): h = '0123456789abcdef' v.append("\\x") v.append(h[b // 16]) v.append(h[b % 16]) d = '' if d: v.append(d) v.append(q) return str.cat(v) def __getitem__(self, idx: int): if idx < 0: idx += len(self) if not (0 <= idx < len(self)): raise IndexError("string index out of range") return str(self.ptr + idx, 1) def __getitem__(self, s: Slice): if s.start is None and s.stop is None and s.step is None: return self.__copy__() elif s.step is None: start, stop, step, length = s.adjust_indices(len(self)) return str(self.ptr + start, length) else: start, stop, step, length = s.adjust_indices(len(self)) return self._make_from_range(start, stop, step, length) def _make_from_range(self, start: int, stop: int, step: int, length: int): p = Ptr[byte](length) j = 0 for i in range(start, stop, step): p[j] = self.ptr[i] j += 1 return str(p, length) def __iter__(self): i = 0 n = len(self) while i < n: yield self[i] i += 1 def __reversed__(self): i = len(self) - 1 while i >= 0: yield self[i] i -= 1 def __mul__(self, x: int): total = x * self.len p = cobj(total) n = 0 for _ in range(x): str.memcpy(p + n, self.ptr, self.len) n += self.len return str(p, total) def _cmp(self, other: str): n = min(self.len, other.len) i = 0 while i < n: c1 = self.ptr[i] c2 = other.ptr[i] if c1 != c2: return int(c1) - int(c2) i += 1 return self.len - other.len import algorithms.strings as algorithms @extend class str: def __contains__(self, pattern: str): return self.find(pattern, 0, len(self)) >= 0 # Helper methods def _slice(self, i: int, j: int): return str(self.ptr + i, j - i) def join(self, l: Generator[str]): if len(self) == 0: return str.cat(list(l)) v = List[str]() for a in l: v.append(a) v.append(self) if v: del v[-1] return str.cat(v) def join(self, l: List[str]): if len(l) == 0: return '' if len(l) == 1: return l[0] if len(self) == 0: return str.cat(l) # compute length n = 0 i = 0 while i < len(l): n += len(l[i]) if i < len(l) - 1: n += len(self) i += 1 # copy to new buffer p = Ptr[byte](n) r = 0 i = 0 while i < len(l): str.memcpy(p + r, l[i].ptr, len(l[i])) r += len(l[i]) if i < len(l) - 1: str.memcpy(p + r, self.ptr, len(self)) r += len(self) i += 1 return str(p, n) def isdigit(self) -> bool: """ str.isdigit() -> bool Return True if all characters in str are digits and there is at least one character in str, False otherwise. """ # For empty strings if len(self) == 0: return False # For single character strings if len(self) == 1: return _C.isdigit(int(self.ptr[0])) > 0 for i in range(len(self)): if _C.isdigit(int(self.ptr[i])) == 0: return False return True def islower(self) -> bool: """ str.islower() -> bool Return True if all cased characters in str are lowercase and there is at least one cased character in str, False otherwise. """ cased = False # For empty strings if len(self) == 0: return False # For single character strings if len(self) == 1: return _C.islower(int(self.ptr[0])) > 0 for i in range(len(self)): if _C.isupper(int(self.ptr[i])) > 0: return False elif cased == False and _C.islower(int(self.ptr[i])): cased = True return cased def isupper(self) -> bool: """ str.isupper() -> bool Return True if all cased characters in str are uppercase and there is at least one cased character in str, False otherwise. """ cased = False # For empty strings if len(self) == 0: return False # For single character strings if len(self) == 1: return _C.isupper(int(self.ptr[0])) > 0 for i in range(len(self)): if _C.islower(int(self.ptr[i])) > 0: return False elif cased == False and _C.isupper(int(self.ptr[i])): cased = True return cased def isalnum(self) -> bool: """ str.isalnum() -> bool Return True if all characters in str are alphanumeric and there is at least one character in str, False otherwise. """ # For empty strings if len(self) == 0: return False # For single character strings if len(self) == 1: return _C.isalnum(int(self.ptr[0])) > 0 for i in range(len(self)): if _C.isalnum(int(self.ptr[i])) == 0: return False return True def isalpha(self) -> bool: """ str.isalpha() -> bool Return True if all characters in str are alphabetic and there is at least one character in str, False otherwise. """ # For empty strings if len(self) == 0: return False # For single character strings if len(self) == 1: return _C.isalpha(int(self.ptr[0])) > 0 for i in range(len(self)): if _C.isalpha(int(self.ptr[i])) == 0: return False return True def isspace(self) -> bool: """ str.isspace() -> bool Return True if all characters in str are whitespace and there is at least one character in str, False otherwise. """ # For empty strings if len(self) == 0: return False # For single character strings if len(self) == 1: return _C.isspace(int(self.ptr[0])) > 0 for i in range(len(self)): if _C.isspace(int(self.ptr[i])) == 0: return False return True def istitle(self) -> bool: """ str.istitle() -> bool Return True if str is a titlecased string and there is at least one character in str, i.e. uppercase characters may only follow uncased characters and lowercase characters only cased ones. Return False otherwise. """ # For empty strings if len(self) == 0: return False # For single character strings if len(self) == 1: return _C.isupper(int(self.ptr[0])) > 0 cased = False prev_is_cased = False for i in range(len(self)): if _C.isupper(int(self.ptr[i])) > 0: if prev_is_cased: return False prev_is_cased = True cased = True elif _C.islower(int(self.ptr[i])) > 0: if not prev_is_cased: return False prev_is_cased = True cased = True else: prev_is_cased = False return cased def capitalize(self) -> str: """ str.capitalize() -> copy of str Return a copy of str with only its first character capitalized (ASCII) and the rest lower-cased. """ if len(self) > 0: # Capitalize first letter s = [str(chr(_C.toupper(int(self.ptr[0]))))] # Make any following char lowercase for i in range(1, len(self)): if _C.isupper(int(self.ptr[i])): s.append(str(chr(_C.tolower(int(self.ptr[i]))))) else: s.append(self[i]) return ''.join(s) # Empty string return '' def isdecimal(self) -> bool: """ str.isdecimal() -> bool Return True if str is a decimal string, False otherwise. str is a decimal string if all characters in str are decimal and there is at least one character in str. """ # Empty string if len(self) == 0: return False for i in range(len(self)): # test ascii values 48-57 == 0-9 if not (48 <= int(self.ptr[i]) <= 57): return False return True def lower(self) -> str: """ str.lower() -> copy of str Return a copy of str with all ASCII characters converted to lowercase. """ # Empty string n = len(self) if n == 0: return '' p = Ptr[byte](n) for i in range(n): p[i] = byte(_C.tolower(int(self.ptr[i]))) return str(p, n) def upper(self) -> str: """ str.upper() -> copy of str Return a copy of str with all ASCII characters converted to uppercase. """ # Empty string n = len(self) if n == 0: return '' p = Ptr[byte](n) for i in range(n): p[i] = byte(_C.toupper(int(self.ptr[i]))) return str(p, n) def isascii(self) -> bool: """ str.isascii() -> bool Return True if str is empty or all characters in str are ASCII, False otherwise. """ for char in self: if int(ord(char)) >= 128: return False return True def casefold(self) -> str: """ str.casefold() -> copy of str Return a version of the string suitable for caseless comparisons. Unlike Python, casefold() deals with just ASCII characters. """ return self.lower() def swapcase(self) -> str: """ str.swapcase() -> copy of str Return a copy of str with uppercase ASCII characters converted to lowercase ASCII and vice versa. """ # Empty string n = len(self) if n == 0: return '' p = Ptr[byte](n) for i in range(n): if _C.islower(int(self.ptr[i])): p[i] = byte(_C.toupper(int(self.ptr[i]))) elif _C.isupper(int(self.ptr[i])): p[i] = byte(_C.tolower(int(self.ptr[i]))) else: p[i] = self.ptr[i] return str(p, n) def title(self) -> str: """ str.title() -> copy of str Return a titlecased version of str, i.e. ASCII words start with uppercase characters, all remaining cased characters have lowercase. """ prev_is_cased = False # Empty string n = len(self) if n == 0: return '' p = Ptr[byte](n) for i in range(n): if _C.islower(int(self.ptr[i])): # lowercase to uppercase if not prev_is_cased: p[i] = byte(_C.toupper(int(self.ptr[i]))) else: p[i] = self.ptr[i] prev_is_cased = True elif _C.isupper(int(self.ptr[i])): # uppercase to lowercase if prev_is_cased: p[i] = byte(_C.tolower(int(self.ptr[i]))) else: p[i] = self.ptr[i] prev_is_cased = True else: p[i] = self.ptr[i] prev_is_cased = False return str(p, n) def isnumeric(self) -> bool: """ str.isdecimal() -> bool Return True if the string is a numeric string, False otherwise. A string is numeric if all characters in the string are numeric and there is at least one character in the string. Unlike Python, isnumeric() deals with just ASCII characters. """ return self.isdecimal() def ljust(self, width: int, fillchar: str = ' ') -> str: """ ljust(width[, fillchar]) -> string Return a left-justified string of length width. Padding is done using the specified fill character (default is a space). """ if width <= len(self): return self return self + (fillchar * (width - len(self))) def rjust(self, width: int, fillchar: str = ' ') -> str: """ rjust(width[, fillchar]) -> string Return a right-justified string of length width. Padding is done using the specified fill character (default is a space). """ if width <= len(self): return self return (fillchar * (width - len(self))) + self def center(self, width: int, fillchar: str = ' ') -> str: """ str.center(width[, fillchar]) -> string Return str centered in a string of length width. Padding is done using the specified fill character (default is a space) """ if width <= len(self): return self pad = width - len(self) left_pad = pad // 2 right_pad = width - len(self) - left_pad return ''.join([fillchar * left_pad, self, fillchar * right_pad]) def zfill(self, width: int) -> str: """ str.zfill(width) -> string Pad a numeric string str with zeros on the left, to fill a field of the specified width. The string str is never truncated. """ sign = False if width <= len(self): return self s = List[str]() if self and (self[0] == '+' or self[0] == '-'): # move sign to beginning of string s.append(self[0]) sign = True fill = width - len(self) s.append('0' * fill) if sign: s.append(self[1:]) else: s.append(self) return ''.join(s) def count(self, sub: str, start: int = 0, end: int = 0x7fffffffffffffff) -> int: """ str.count(sub[, start[, end]]) -> int Return the number of occurrences of subsection sub in bytes str[start:end]. Optional arguments start and end are interpreted as in slice notation. """ start, end = self._correct_indices(start, end) count = 0 for _ in algorithms.filter_overlaps(self[start:end]._search(sub), len(sub)): count += 1 return count def find(self, sub: str, start: int = 0, end: int = 0x7fffffffffffffff) -> int: """ str.find(sub [,start [,end]]) -> int Return the lowest index in str where substring sub is found, such that sub is contained within str[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure. """ start, end = self._correct_indices(start, end) pos = str._getfirst(self[start:end]._search(sub)) if pos < 0: return -1 if sub == '' and start > len(self): return -1 if sub == '' and (start <= end <= len(self)): return start return pos + start # add start position because of truncation def rfind(self, sub: str, start: int = 0, end: int = 0x7fffffffffffffff) -> int: """ str.rfind(sub [,start [,end]]) -> int Return the highest index in str where substring sub is found, such that sub is contained within str[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure. """ start, end = self._correct_indices(start, end) pos = str._getfirst(self[start:end]._rsearch(sub)) if pos < 0: return -1 if sub == '' and start > len(self): return -1 return pos + start # add start position because of truncation def isidentifier(self) -> bool: """ str.isidentifier() -> bool Return True if the string is a valid identifier, False otherwise. Unlike Python, isidentifier() deals with just ASCII characters. """ # empty string if len(self) == 0: return False # is not a letter or _ if not self[0].isalpha(): if self[0] != '_': return False if self[0].isalpha() or self[0] == '_': for i in range(1, len(self)): if not self[i].isalpha(): if not self[i].isdecimal(): if self[i] != '_': return False return True def isprintable(self) -> bool: """ str.isprintable() -> bool Return True if the string is printable or empty, False otherwise. Unlike Python, isprintable() deals with just ASCII characters. """ for char in self: if not (31 < int(ord(char)) < 128): return False return True def _has_char(self, chars: str): if chars: for c in chars: if self[0] == c: return True return False else: return self[0].isspace() def lstrip(self, chars: str = "") -> str: """ str.lstrip([chars]) -> string Return a copy of the string str with leading whitespace removed. If chars is given, remove characters in chars instead. Unlike Python, lstrip() deals with just ASCII characters. """ i = 0 while i < len(self) and self[i]._has_char(chars): i += 1 return self[i:] def rstrip(self, chars: str = "") -> str: """ str.rstrip([chars]) -> string Return a copy of the string str with trailing whitespace removed. If chars is given, remove characters in chars instead. Unlike Python, lstrip() deals with just ASCII characters. """ i = len(self) - 1 while i >= 0 and self[i]._has_char(chars): i -= 1 return self[:i+1] def strip(self, chars: str = "") -> str: """ str.strip([chars]) -> string Return a copy of the string str with leading and trailing whitespace removed. If chars is given, remove characters in chars instead. Unlike Python, lstrip() deals with just ASCII characters. """ lstr = self.lstrip(chars) rstr = lstr.rstrip(chars) return rstr def partition(self, sep: str) -> Tuple[str, str, str]: """ Search for the separator sep in str, and return the part before it, the separator itself, and the part after it. If the separator is not found, return str and two empty strings. """ pos = str._getfirst(self._search(sep)) if pos < 0: return self,'','' if not pos: return '', sep, self[pos+len(sep):] return self[:pos],sep,self[pos+len(sep):] def rpartition(self, sep: str) -> Tuple[str, str, str]: """ Search for the separator sep in str, starting at the end of str, and return the part before it, the separator itself, and the part after it. If the separator is not found, return two empty strings and str. """ pos0 = -1 pos1 = -1 for pos in self._search(sep): if pos0 == -1: pos0 = pos pos1 = pos if pos0 < 0: return '', '', self if not pos0: return '', sep, self[pos1+len(sep):] return self[:pos1], sep, self[pos1+len(sep):] def split(self, sep: Optional[str] = None, maxsplit: int = -1) -> List[str]: """ str.split([sep [,maxsplit]]) -> list of strings Return a list of the words in the string str, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done. If sep is not specified, any whitespace string is a separator and empty strings are removed from the result. """ if not sep: return self._split_whitespace(maxsplit if maxsplit >= 0 else 0x7fffffffffffffff) sepx = ~sep li = list(algorithms.filter_overlaps(self._search(sepx), len(sepx))) str_split = List[str]() # no delimiter found if len(li) == 0: return [self] if len(sepx) > len(self): return [self] if maxsplit == 0: return [self] if maxsplit < 0 or maxsplit > len(li): maxsplit = len(li) prev = li[0] # append first part of string # if sep is found at index 0, add '' to separate if li[0] == 0: str_split.append('') else: str_split.append(self[:li[0]]) # split the rest of the string according to separator if len(li) > 1 and maxsplit > 1: for j in range(1, maxsplit): # when separators are beside each other, append '' to list if li[j] - 1 == prev: str_split.append('') else: str_split.append(self[prev+len(sepx):li[j]]) prev = li[j] if prev != len(self): str_split.append(self[prev+len(sepx):]) return str_split def rsplit(self, sep: Optional[str] = None, maxsplit: int = -1) -> List[str]: """ str.rsplit([sep [,maxsplit]]) -> list of strings Return a list of the words in the string str, using sep as the delimiter string, starting at the end of the string and working to the front. If maxsplit is given, at most maxsplit splits are done. If sep is not specified, any whitespace string is a separator. """ if not sep: return self._rsplit_whitespace(maxsplit if maxsplit >= 0 else 0x7fffffffffffffff) sepx = ~sep li = list(algorithms.rfilter_overlaps(reversed(list(self._search(sepx))), len(sepx))) str_split = List[str]() end_of_li = len(li) - 1 if len(li) == 0: return [self] if len(sepx) > len(self): return [self] if maxsplit == 0: return [self] if maxsplit < 0 or maxsplit > len(li): maxsplit = len(li) prev = li[0] # append first part of string # if sep is found in the last index, add '' to separate if prev == len(self) - len(sepx): str_split.append('') else: str_split.append(self[prev+len(sepx):]) # split the rest of the string according to separator if len(li) > 1 and maxsplit > 1: for j in range(1, maxsplit): # when separators are beside each other, append '' to list if li[j] + 1 == prev: str_split.append('') else: str_split.append(self[li[j]+len(sepx):prev]) prev = li[j] if prev != 0: str_split.append(self[:prev]) else: # NOT PICKING UP '' at start of string so manually putting it in if li[end_of_li] == 0: str_split.append('') else: str_split.append(self[:li[0]]) str_split.reverse() return str_split def splitlines(self, keepends: bool = False) -> List[str]: """ str.splitlines([keepends]) -> list of strings Return a list of the lines in str, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true. """ line_split = List[str]() prev = 0 for i in range(len(self)): # finding '\n' by itself and dealing with '\r\n' if i != 0: # not equal to '\r\n' if self[i] == '\n' and self[i-1] != '\r': if keepends: line_split.append(self[prev:i+1]) else: # empty string if len(self[prev:i]) == 0: line_split.append('') else: line_split.append(self[prev:i]) prev = i+1 continue # equal to '\r\n' elif self[i] == '\n' and self[i-1] == '\r': if keepends: line_split.append(self[prev:i+1]) else: # empty string if len(self[prev:i-1]) == 0: line_split.append('') else: line_split.append(self[prev:i-1]) prev = i+1 continue # '\n' exisits at the beginning of string elif self[i] == '\n': if keepends: line_split.append(self[i]) else: line_split.append('') prev = i+1 continue # finding '\r' by itself if i != len(self)-1: # not equal to '\r\n' if self[i] == '\r' and self[i+1] != '\n': if keepends: line_split.append(self[prev:i+1]) else: # empty string if len(self[prev:i]) == 0: line_split.append('') else: line_split.append(self[prev:i]) prev = i+1 continue # '\r' exisits at the end of string elif self[i] == '\r': if self[i-1] == '\n' or self[i-1] == '\r': if keepends: line_split.append(self[i]) else: line_split.append('') prev = i+1 break prev = i+1 break if prev < len(self): line_split.append(self[prev:]) return line_split def startswith(self, prefix: str, start: int = 0, end: int = 0x7fffffffffffffff) -> bool: """ str.startswith(prefix[, start[, end]]) -> bool Return True if str starts with the specified prefix, False otherwise. With optional start, test str beginning at that position. With optional end, stop comparing str at that position. """ if end < 0: end += len(self) elif start < 0: start += len(self) # length prefix is longer than range of string being compared to if start + len(prefix) > len(self): return False # length of prefix is longer than range of string[start:end] if end - start < len(prefix): return False # prefix is an empty string if prefix == '': return True return prefix == self[start:start + len(prefix)] def endswith(self, suffix: str, start: int = 0, end: int = 0x7fffffffffffffff) -> bool: """ str.endswith(prefix[, start[, end]]) -> bool Return True if str ends with the specified suffix, False otherwise. With optional start, test str beginning at that position. With optional end, stop comparing str at that position. """ if end < 0: end += len(self) elif start < 0: start += len(self) if end > len(self): end = len(self) # length prefix is longer than range of string being compared to if end - start < len(suffix) or start > len(self): return False if end - len(suffix) > start: start = end - len(suffix) # length of prefix is longer than range of string[start:end] if end - start < len(suffix): return False # prefix is an empty string if suffix == '': return True return suffix == self[start:start + len(suffix)] def index(self, sub: str, start: int = 0, end: int = 0x7fffffffffffffff) -> int: """ str.index(sub [,start [,end]]) -> int Like str.find() but raise ValueError when the substring is not found. """ start, end = self._correct_indices(start, end) i = self.find(sub, start, end) if i == -1: raise ValueError("substring not found") else: return i def rindex(self, sub: str, start: int = 0, end: int = 0x7fffffffffffffff) -> int: """ str.index(sub [,start [,end]]) -> int Like str.find() but raise ValueError when the substring is not found. """ start, end = self._correct_indices(start, end) i = self.rfind(sub, start, end) if i == -1: raise ValueError("substring not found") else: return i def replace(self, old: str, new: str, maxcount: int = -1) -> str: """ str.replace(old, new[, count]) -> string Return a copy of string str with all occurrences of substring old replaced by new. If the optional argument maxcount is given, only the first maxcount occurrences are replaced. For now, maxcount is required. """ if maxcount < 0: maxcount = len(self) + 1 # replace zero matches or length of self is 0 elif maxcount == 0 or len(self) == 0: return self # replace zero matches or there is nothing to replace if maxcount == 0 or len(new) == 0 and len(old) == 0: return self # Handle zero-length special cases # insert the 'new' string everywhere. if len(old) == 0: return algorithms.replace_interleave(self, new, maxcount) # No way for an empty string to generate a non-empty string. # except ''.replace('', 'A') == 'A' which is handled above. if len(self) == 0: return self # delete all occurances of old in self return algorithms.replace_delete_substring(self, old, new, maxcount) def expandtabs(self, tabsize: int = 8) -> str: """ str.expandtabs([tabsize]) -> string Return a copy of str where all tab characters are expanded using spaces. If tabsize is not given, a tab size of 8 characters is assumed. """ incr = 0 i = 0 # chars up to and including most recent \n or \r j = 0 # chars since most recent \n or \r (use in tab calculations) u = List[str]() j = 0 # same as first pass # create output string and fill it for p in range(len(self)): if self[p] == '\t': if tabsize > 0: i = tabsize - (j % tabsize) j += i while i != 0: u.append(' ') i -= 1 else: u.append(self[p]) j += 1 if self[p] == '\n' or self[p] == '\r': j = 0 return ''.join(u) def translate(self, table) -> str: """ Return a copy with each character mapped by the given translation table. Unlike Python, translate() currently does not allow the translation table to be a bytes object of length 256. As well, None implemented yet until None and be placed inside the table with other strings. Use: {'a': ''} to replace a string for now """ li = list(iter(self)) for i in range(len(li)): if li[i] in table: li[i] = table[li[i]] translate_str = ''.join(li) return translate_str # Internal helpers def _isspace(b: byte): return b == byte(32) or b == byte(9) or b == byte(10) or \ b == byte(11) or b == byte(12) or b == byte(13) def _search(self, pattern: str): if len(pattern) == 1: c = pattern.ptr[0] i = 0 while i < len(self): if self.ptr[i] == c: yield i i += 1 elif len(pattern) <= len(self): if len(pattern) <= 5: yield from algorithms.string_search_slow(self, pattern) else: yield from algorithms.string_search_KMP(self, pattern) def _rsearch(self, pattern: str): if len(pattern) == 1: c = pattern.ptr[0] i = len(self) - 1 while i >= 0: if self.ptr[i] == c: yield i i -= 1 yield from algorithms.rstring_search_slow(self, pattern) def _getfirst(v: Generator[int]): n = -1 if not v.done(): n = v.next() v.destroy() return n def _correct_indices(self, start: int, end: int): n = len(self) if start < 0: start += n if start < 0: start = 0 if end < 0: end += n if end < 0: end = 0 return (start, end) def _split_whitespace(self, maxcount: int): PREALLOC_MAX = 12 l = List[str](PREALLOC_MAX if maxcount >= PREALLOC_MAX else maxcount + 1) str_len = len(self) i = 0 j = 0 while maxcount > 0: maxcount -= 1 while i < str_len and str._isspace(self.ptr[i]): i += 1 if i == str_len: break j = i i += 1 while i < str_len and not str._isspace(self.ptr[i]): i += 1 l.append(self._slice(j, i)) if i < str_len: while i < str_len and str._isspace(self.ptr[i]): i += 1 if i != str_len: l.append(self._slice(i, str_len)) return l def _rsplit_whitespace(self, maxcount: int): PREALLOC_MAX = 12 l = List[str](PREALLOC_MAX if maxcount >= PREALLOC_MAX else maxcount + 1) str_len = len(self) i = str_len - 1 j = str_len - 1 while maxcount > 0: maxcount -= 1 while i >= 0 and str._isspace(self.ptr[i]): i -= 1 if i < 0: break j = i i -= 1 while i >= 0 and not str._isspace(self.ptr[i]): i -= 1 l.append(self._slice(i+1, j+1)) if i >= 0: while i >= 0 and str._isspace(self.ptr[i]): i -= 1 if i >= 0: l.append(self._slice(0, i+1)) l.reverse() return l