import numpy.random as rnd from numpy import * import numpy as np @test def test_SFC64_integers(seed, low, expected, high=None, size=None, e=False): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(low, int) or isinstance(low, float)) and (high is None or isinstance( high, int) or isinstance(high, float)): assert gen.integers(low, high, endpoint=e) == expected else: assert (gen.integers(low, high, endpoint=e) == expected).all() else: assert (gen.integers(low, high, size, endpoint=e) == expected).all() test_SFC64_integers(74, 5, 4) test_SFC64_integers(74, 987.4, 897) test_SFC64_integers(74, 98, 906, high=987) test_SFC64_integers(74, 89, 81, e=True) test_SFC64_integers(74, -1218, -22, high=98) test_SFC64_integers(74, -5, np.array([49, 17, 46]), 55, size=3) test_SFC64_integers(74, -5, np.array([50, 18, 47]), 55, size=3, e=True) test_SFC64_integers(74, np.array([7, 49, 17]), np.array([71, 60, 69]), 78) test_SFC64_integers(74, -99, np.array([61, -28, 72]), np.array([77, 89, 101])) test_SFC64_integers(74, np.array([7, 49, 17]), np.array([70, 64, 88]), np.array([77, 89, 101])) @test def test_SFC64_random(seed, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: assert gen.random() == expected else: assert (round(gen.random(size), 8) == round(expected, 8)).all() test_SFC64_random(0, 0.5686892493917326) test_SFC64_random(1, 0.9956200510286735) test_SFC64_random(1234, 0.845119081462231) test_SFC64_random( 1234, np.array([0.84511908, 0.55138007, 0.31781911, 0.05565777, 0.96435368]), size=5) test_SFC64_random(74, np.array([[0.38219269, 0.67730401, 0.68207767], [0.40336162, 0.58776338, 0.35552843]]), size=(2, 3)) @test def test_SFC64_choice(seed, a, expected, size=None, r=True, p=None, axis=0, shuffle=True): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(a, int): assert gen.choice(a, size, r, p, axis, shuffle) == expected elif staticlen(a.shape) == 1: assert gen.choice(a, size, r, p, axis, shuffle) == expected else: assert (round(gen.choice(a, size, r, p, axis, shuffle), 8) == expected).all() else: assert (round(gen.choice(a, size, r, p, axis, shuffle), 8) == expected).all() test_SFC64_choice( 621, np.array([ 1.34, 2.15, 3.21, 4.78, 5.55, 6.42, 7.99, 8.31, 9.61, 10.75, 11.33, 12.93 ]), np.array([1.34, 10.75, 7.99]), 3) test_SFC64_choice( 318, np.array([5, 4, 2, 6, 7, 8, 2, 12, 1, 55, 33, 7, 78, 15, 43]), 7) test_SFC64_choice(318, np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), np.array([11, 3, 5]), 3, False) test_SFC64_choice( 4589, np.array([ -1.34, -2.15, -3.21, -4.78, -5.55, -6.42, -7.99, -8.31, -9.61, -10.75, -11.33, -12.93 ]), -9.61) test_SFC64_choice(318, np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]), np.array([[4, 5, 6], [10, 11, 12]]), 2) test_SFC64_choice(74, np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]), np.array([10, 11, 12])) test_SFC64_choice(74, 1, 0) test_SFC64_choice(74, np.array([13, -4]), -4, p=np.array([0.3, 0.7])) test_SFC64_choice(74, np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]), np.array([[3], [6], [9], [12]]), axis=1) test_SFC64_choice(74, np.array([13, -4, 3, 18]), 13, p=np.array([0.5, 0.3, 0.1, 0.1]), shuffle=True) @test def test_SFC64_bytes(seed, length, expected): gen = rnd.Generator(rnd.SFC64(seed)) check = gen.bytes(length) == expected assert check test_SFC64_bytes(555, 10, "O\x9e\x1b<\x9cR\x1c.H\x19") @test def test_SFC64_shuffle(seed, x, expected, axis=0): gen = rnd.Generator(rnd.SFC64(seed)) gen.shuffle(x, axis) assert (x == expected).all() test_SFC64_shuffle(876, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), np.array([9, 0, 8, 2, 7, 3, 4, 6, 1, 5])) test_SFC64_shuffle(111, np.array([5.43, 6.56, 1.22, 4.3221, 7.88, 0.9352]), np.array([7.88, 0.9352, 6.56, 1.22, 5.43, 4.3221])) test_SFC64_shuffle(1234, np.array([3.14]), np.array([3.14])) test_SFC64_shuffle(74, np.arange(9).reshape((3, 3)), np.array([[6, 7, 8], [0, 1, 2], [3, 4, 5]])) test_SFC64_shuffle(74, np.arange(9).reshape((3, 3)), np.array([[2, 0, 1], [5, 3, 4], [8, 6, 7]]), axis=1) @test def test_SFC64_permutation(seed, x, expected, axis=0): gen = rnd.Generator(rnd.SFC64(seed)) assert (gen.permutation(x, axis) == expected).all() test_SFC64_permutation(12345, 10, np.array([4, 3, 1, 5, 9, 8, 6, 0, 7, 2])) test_SFC64_permutation(1234, np.array([1.124, 4.7532, 9.1246, 12.53243, 15.64324]), np.array([15.64324, 4.7532, 9.1246, 12.53243, 1.124])) test_SFC64_permutation( 4321, np.arange(24).reshape(3, 8), np.array([[16, 17, 18, 19, 20, 21, 22, 23], [8, 9, 10, 11, 12, 13, 14, 15], [0, 1, 2, 3, 4, 5, 6, 7]])) test_SFC64_permutation(74, np.arange(9).reshape((3, 3)), np.array([[2, 0, 1], [5, 3, 4], [8, 6, 7]]), axis=1) @test def test_SFC64_permuted(seed, x, expected, axis=None): gen = rnd.Generator(rnd.SFC64(seed)) arr = gen.permuted(x, axis) assert (arr == expected).all() test_SFC64_permuted(4321, np.array([1.124, 4.7532, 9.1246, 12.53243, 15.64324]), np.array([9.1246, 15.64324, 4.7532, 1.124, 12.53243])) test_SFC64_permuted( 4321, np.arange(24).reshape(3, 8), np.array([[21, 7, 22, 5, 9, 1, 6, 19], [18, 16, 14, 0, 20, 17, 12, 3], [8, 11, 10, 23, 2, 13, 4, 15]])) @test def test_SFC64_beta(seed, a, b, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(a, int) or isinstance(a, float)) and (isinstance( b, int) or isinstance(b, float)): assert gen.beta(a, b) == expected else: assert (round(gen.beta(a, b), 8) == expected).all() else: assert (round(gen.beta(a, b, size), 8) == expected).all() #test_SFC64_beta(4321, -7, 0, error) test_SFC64_beta(4321, 0.2, 0.1, 0.997423991996233) test_SFC64_beta(4321, 10, 14, 0.28271738921432865) test_SFC64_beta(4321, 167, 2041, np.array([0.06958452, 0.07693825, 0.07529241, 0.08165749]), 4) test_SFC64_beta(139, 14.32, 4, 0.8247260405458904) test_SFC64_beta(457, 12.87, 9.21, 0.5617457872800475) test_SFC64_beta( 457, np.array([12.87, 1.32, 4.532, 1.34, 8.432]), 9.21, np.array([0.56174579, 0.00369936, 0.25818220, 0.13144450, 0.36499717])) test_SFC64_beta( 457, 32.14, np.array([9.21, 0.21, 14.32, 41.21, 5.55]), np.array([0.76283046, 0.99080339, 0.69766178, 0.38339742, 0.89963656])) test_SFC64_beta( 457, np.array([12.87, 1.32, 4.532, 1.34, 8.432]), np.array([9.21, 0.21, 14.32, 41.21, 5.55]), np.array([0.56174579, 0.11208923, 0.25413326, 0.00258646, 0.77501163])) @test def test_SFC64_binomial(seed, n, p, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(n, int) or isinstance(n, float)) and (isinstance( p, int) or isinstance(p, float)): assert gen.binomial(n, p) == expected else: assert (gen.binomial(n, p) == expected).all() else: assert (gen.binomial(n, p, size) == expected).all() #test_SFC64_binomial(139, -2, .33, 0) test_SFC64_binomial(139, 28400, .66, 18691) test_SFC64_binomial(139, 14.76, .33, 6) test_SFC64_binomial(139, 0, .33, 0) test_SFC64_binomial(139, 14, 0, 0) test_SFC64_binomial(147, 10, .5, np.array([6, 4, 7, 6, 5, 5, 4, 5, 6, 3]), 10) test_SFC64_binomial(457, np.array([12, 1, 4, 7, 8]), 0.11, np.array([1, 0, 0, 1, 1])) test_SFC64_binomial(457, 12, np.array([0.11, 0.21, 0.32, 0.43]), np.array([1, 2, 3, 5])) test_SFC64_binomial(457, np.array([12, 1, 4, 7, 8]), np.array([0.11, 0.21, 0.32, 0.43, 0.55]), np.array([1, 0, 1, 3, 4])) @test def test_SFC64_chisquare(seed, df, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(df, float) or isinstance(df, int)): assert gen.chisquare(df) == expected else: assert (round(gen.chisquare(df), 8) == expected).all() else: assert (round(gen.chisquare(df, size), 8) == expected).all() test_SFC64_chisquare(457, 12.12, 11.966063817767916) test_SFC64_chisquare(457, 24.12, np.array([24.18381621, 26.19325346]), 2) test_SFC64_chisquare( 457, np.array([23, 42, 34, 17]), np.array([23.04634179, 44.93754189, 18.93394980, 12.24727194])) test_SFC64_chisquare( 457, np.array([274.23, 325.42, 352.34, 825.17]), np.array([276.04011404, 334.67517564, 298.76233776, 793.05450604])) @test def test_SFC64_dirichlet(seed, alpha, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) assert (round(gen.dirichlet(alpha, size), 8) == round(expected, 8)).all() test_SFC64_dirichlet( 457, np.array([278.23, 325.42, 352.34, 825.17]), np.array([0.16181824, 0.19215271, 0.18167716, 0.46435189])) test_SFC64_dirichlet( 874, np.array([10, 5, 3]), np.array([[0.51743412, 0.34158578, 0.14098010], [0.83079306, 0.06186507, 0.10734187]]), 2) #test_SFC64_dirichlet(1234, np.array([]), np.array([])) test_SFC64_dirichlet(74, np.array([0.01, 0.05]), np.array([4.09793014e-39, 1.00000000])) @test def test_SFC64_exponential(seed, scale, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(scale, float) or isinstance(scale, int)): assert gen.exponential(scale) == expected else: assert (round(gen.exponential(scale), 8) == expected).all() else: assert (round(gen.exponential(scale, size), 8) == expected).all() test_SFC64_exponential(74, 1, 0.614763996552136) test_SFC64_exponential(874, 3, 0.13467829696559896) test_SFC64_exponential(874, 724.952, 32.5451002472683) test_SFC64_exponential( 874, np.array([278.23, 325.42, 352.34, 825.17]), np.array([12.49051419, 58.84353559, 22.45415942, 593.22299347])) test_SFC64_exponential( 874, 724.952, np.array([ 32.54510025, 131.08825152, 46.20022644, 521.17526760, 1494.82126609, 45.90285356, 239.67612418 ]), 7) @test def test_SFC64_f(seed, dfnum, dfden, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(dfnum, float) or isinstance(dfnum, int)) and (isinstance(dfden, float) or isinstance(dfden, int)): assert gen.f(dfnum, dfden) == expected else: assert (round(gen.f(dfnum, dfden), 8) == expected).all() else: assert (round(gen.f(dfnum, dfden, size), 8) == expected).all() test_SFC64_f(874, 12, 4.21, 0.6713378390508739) test_SFC64_f( 874, np.array([14, 15, 16, 17, 18]), 4.21, np.array([0.67043074, 0.36520957, 0.55067818, 1.16853235, 14.44185656])) test_SFC64_f( 874, 2557, 0.92, np.array([12.55103903, 4.24970982, 4.78102326, 4.87903268, 4.01745429]), 5) test_SFC64_f(874, 7343, np.array([12.52, 0.92, 231.52]), np.array([0.73535605, 4.24355837, 0.91151352])) @test def test_SFC64_gamma(seed, shape, expected, scale=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(shape, float) or isinstance(shape, int)) and (isinstance(scale, float) or isinstance(scale, int)): assert gen.gamma(shape, scale) == expected else: assert (round(gen.gamma(shape, scale), 8) == expected).all() else: assert (round(gen.gamma(shape, scale, size), 8) == expected).all() test_SFC64_gamma(318, 564, 598.378275104569) test_SFC64_gamma(318, 564, 3291.080513075129, 5.5) test_SFC64_gamma(318, 564, np.array([3291.08051308, 1306.08172100]), np.array([5.5, 2.2])) test_SFC64_gamma( 318, 564, np.array([2467.37392281, 2447.97412784, 2399.22002265, 2336.40987953]), 4.123435, 4) test_SFC64_gamma( 318, np.array([19, 17, 45, 52, 21]), np.array( [218.01672004, 189.88935671, 425.71054348, 448.20979789, 155.14718090]), 8.527) test_SFC64_gamma( 318, np.array([19, 17, 45, 52, 21]), np.array( [28.12459154, 97.98442237, 99.85001606, 399.48334279, 179.58281641]), np.array([1.1, 4.4, 2, 7.6, 9.87])) @test def test_SFC64_geometric(seed, p, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(p, float) or isinstance(p, int): assert gen.geometric(p) == expected else: assert (gen.geometric(p) == expected).all() else: assert (gen.geometric(p, size) == expected).all() test_SFC64_geometric(457, 0.35, 2) test_SFC64_geometric(457, 0.2, 2) test_SFC64_geometric(2000, 1, 1) test_SFC64_geometric(12654, 0.5, np.array([2., 4., 3., 1.]), 4) test_SFC64_geometric(12654, np.array([0.01, 0.6, 0.45, 0.33]), np.array([67, 3, 3, 1])) @test def test_SFC64_gumbel(seed, expected, loc=0.0, scale=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(loc, float) or isinstance(loc, int)) and (isinstance( scale, float) or isinstance(scale, int)): assert gen.gumbel(loc, scale) == expected else: assert (round(gen.gumbel(loc, scale), 8) == expected).all() else: assert (round(gen.gumbel(loc, scale, size), 8) == expected).all() test_SFC64_gumbel(1234, -0.6233139872603548) test_SFC64_gumbel(1234, 11.376686012739645, 12) test_SFC64_gumbel(1234, -76.04430644576328, scale=122) test_SFC64_gumbel(1234, np.array([-0.62331399, 0.22117146, 0.96113010]), size=3) test_SFC64_gumbel(1234, np.array( [-7.35510505, 11.31734384, 57.79275280, 18.44723753]), scale=np.array([11.8, 51.17, 60.13, 6.45])) @test def test_SFC64_hypergeometric(seed, ngood, nbad, nsample, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(ngood, int) or isinstance(ngood, float)) and ( isinstance(nbad, int) or isinstance(nbad, float)) and ( isinstance(nsample, int) or isinstance(nsample, float)): assert gen.hypergeometric(ngood, nbad, nsample) == expected else: assert (gen.hypergeometric(ngood, nbad, nsample) == expected).all() else: assert (gen.hypergeometric(ngood, nbad, nsample, size) == expected).all() test_SFC64_hypergeometric(1234, 11, 12, 9, 6) test_SFC64_hypergeometric(1234, 100, 300, 200, 51) #test_SFC64_hypergeometric(1234, 100.31, 300.55, 200.2, 51) test_SFC64_hypergeometric(1234, 100, 300, np.array([200, 201, 222, 221]), np.array([51, 51, 54, 62])) test_SFC64_hypergeometric(1234, 100, np.array([301, 303, 304, 344, 355]), 200, np.array([50, 49, 51, 38, 38])) test_SFC64_hypergeometric(1234, np.array([100, 111, 112, 122]), 300, 200, np.array([51, 53, 55, 50])) test_SFC64_hypergeometric(1234, 100, 700, 450, np.array([56, 57, 55, 64, 62]), 5) @test def test_SFC64_laplace(seed, expected, loc=0.0, scale=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(loc, float) or isinstance(loc, int)) and (isinstance( scale, float) or isinstance(scale, int)): assert gen.laplace(loc, scale) == expected else: assert (round(gen.laplace(loc, scale), 8) == expected).all() else: assert (round(gen.laplace(loc, scale, size), 8) == expected).all() test_SFC64_laplace(1234, 1.1719515442699244) test_SFC64_laplace(1234, 13.171951544269925, 12) test_SFC64_laplace(1234, 142.97808840093077, scale=122) test_SFC64_laplace(1234, np.array([1.17195154, 0.10843205, -0.45312571]), size=3) test_SFC64_laplace(1234, np.array( [1.97195154, 1.27843205, -0.32312571, 263.25461367]), loc=np.array([0.8, 1.17, 0.13, 265.45])) test_SFC64_laplace(1234, np.array( [13.82902822, 5.54846777, -27.24644891, -14.16024183]), scale=np.array([11.8, 51.17, 60.13, 6.45])) @test def test_SFC64_logistic(seed, expected, loc=0.0, scale=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(loc, float) or isinstance(loc, int)) and (isinstance( scale, float) or isinstance(scale, int)): assert gen.logistic(loc, scale) == expected else: assert (round(gen.logistic(loc, scale), 8) == expected).all() else: assert (round(gen.logistic(loc, scale, size), 8) == expected).all() test_SFC64_logistic(1234, 1.6968209880833125) test_SFC64_logistic(1234, 13.696820988083312, 12) test_SFC64_logistic(1234, 207.01216054616413, scale=122) test_SFC64_logistic(1234, np.array([1.69682099, 0.20624830, -0.76381247]), size=3) test_SFC64_logistic(1234, np.array( [2.49682099, 1.37624830, -0.63381247, 262.61873314]), loc=np.array([0.8, 1.17, 0.13, 265.45])) test_SFC64_logistic( 1234, np.array([20.02248766, 10.55372536, -45.92804359, -18.26167125]), scale=np.array([11.8, 51.17, 60.13, 6.45])) @test def test_SFC64_lognormal(seed, expected, mean=0.0, sigma=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(mean, float) or isinstance(mean, int)) and (isinstance( sigma, float) or isinstance(sigma, int)): assert gen.lognormal(mean, sigma) == expected else: assert (round(gen.lognormal(mean, sigma), 8) == expected).all() else: assert (round(gen.lognormal(mean, sigma, size), 8) == expected).all() test_SFC64_lognormal(1234, 0.23949890805477525) test_SFC64_lognormal(1234, 38979.59482553418, 12) test_SFC64_lognormal(1234, 0.05735972695942969, sigma=2) test_SFC64_lognormal(1234, np.array([0.23949891, 2.19364846, 1.33309599]), size=3) test_SFC64_lognormal(1234, np.array( [0.53301462, 7.06791919, 1.51816755, 117.49197082]), mean=np.array([0.8, 1.17, 0.13, 5.45])) test_SFC64_lognormal(1234, np.array([0.07633898, 5.49961716, 1.25138778, 0.37110750]), sigma=np.array([1.8, 2.17, 0.78, 1.45])) @test def test_SFC64_logseries(seed, p, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(p, float) or isinstance(p, int): assert gen.logseries(p) == expected else: assert (gen.logseries(p) == expected).all() else: assert (gen.logseries(p, size) == expected).all() test_SFC64_logseries(457, 0.35, 1) test_SFC64_logseries(2000, 0, 1) test_SFC64_logseries(457, 0.5, np.array([1., 2., 1., 2.]), 4) test_SFC64_logseries(457, np.array([0.01, 0.6, 0.45, 0.33]), np.array([1, 1, 1, 1])) @test def test_SFC64_multinomial(seed, n, pvals, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) assert (round(gen.multinomial(n, pvals, size), 8) == expected).all() test_SFC64_multinomial(457, 20, [1 / 6.], np.array([20])) test_SFC64_multinomial(457, 20.6, [1 / 6.], np.array([20])) test_SFC64_multinomial(457, 20, [1 / 6.] * 6, np.array([3, 3, 2, 4, 4, 4])) test_SFC64_multinomial( 457, 20, [1 / 6] * 6, np.array([[3, 3, 2, 4, 4, 4], [2, 4, 1, 9, 2, 2], [4, 3, 4, 3, 5, 1]]), 3) #test_SFC64_multinomial(457, 1, np.array([[.1, .5, .4 ], [.3, .7, .0]]), np.array([[0, 1, 0], [0, 1, 0]])) #test_SFC64_multinomial(457, -1, [1/6.], error) @test def test_SFC64_multivariate_hypergeometric(seed, colors, nsample, expected, size=None, method='marginals'): gen = rnd.Generator(rnd.SFC64(seed)) assert (gen.multivariate_hypergeometric(colors, nsample, size, method) == expected).all() test_SFC64_multivariate_hypergeometric(457, np.array([16, 8, 4]), 15, np.array([7, 7, 1])) test_SFC64_multivariate_hypergeometric(457, np.array([16, 8, 4]), 15, np.array([[7, 7, 1], [10, 4, 1], [9, 4, 2]]), size=3) test_SFC64_multivariate_hypergeometric(457, np.array([16, 8, 4]), 0, np.array([0, 0, 0])) test_SFC64_multivariate_hypergeometric(457, np.array([16, 8, 4]), 8, np.array([5, 3, 0]), method='count') @test def test_SFC64_multivariate_normal(seed, mean, cov, expected, size=None, check_valid: Static[str] = 'warn', tol: float = 1e-8, m: Static[str] = 'svd'): gen = rnd.Generator(rnd.SFC64(seed)) assert (round( gen.multivariate_normal(mean, cov, size, check_valid=check_valid, tol=tol, method=m), 8) == expected).all() test_SFC64_multivariate_normal(1234, (1, 2), np.array([[1, 0], [0, 1]]), np.array([-0.42920642, 2.78556612])) test_SFC64_multivariate_normal(5432, (1, 2), np.array([[1, 0], [0, 1]]), np.array([-0.56243526, 4.58304033]), m='cholesky') @test def test_SFC64_negative_binomial(seed, n, p, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(n, int) or isinstance(n, float)) and (isinstance( p, int) or isinstance(p, float)): assert gen.negative_binomial(n, p) == expected else: assert (gen.negative_binomial(n, p) == expected).all() else: assert (gen.negative_binomial(n, p, size) == expected).all() test_SFC64_negative_binomial(139, 28400, .66, 14582) test_SFC64_negative_binomial(139, 14.76, .33, 28) #test_SFC64_negative_binomial(139, 14, 0, error) test_SFC64_negative_binomial(147, 10, .5, np.array([10, 6, 6, 13, 12, 5, 16, 13, 10, 13]), 10) test_SFC64_negative_binomial(457, np.array([12, 1, 4, 7, 8]), 0.11, np.array([89, 26, 50, 33, 48])) test_SFC64_negative_binomial(457, 12, np.array([0.11, 0.21, 0.32, 0.43]), np.array([[89, 23, 18, 24]])) @test def test_SFC64_noncentral_chisquare(seed, df, nonc, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(df, int) or isinstance(df, float)) and (isinstance( nonc, int) or isinstance(nonc, float)): assert gen.noncentral_chisquare(df, nonc) == expected else: assert (round(gen.noncentral_chisquare(df, nonc), 8) == expected).all() else: assert (round(gen.noncentral_chisquare(df, nonc, size), 8) == expected).all() test_SFC64_noncentral_chisquare(457, 0.1, 0.2, 8.383813499573139e-10) test_SFC64_noncentral_chisquare(457, 5, 0, 4.651609985678877) test_SFC64_noncentral_chisquare(457, 99, 7, 108.00168289970618) test_SFC64_noncentral_chisquare( 457, 14.2, 0.5, np.array([14.26295297, 7.90698982, 9.56194238]), 3) test_SFC64_noncentral_chisquare( 457, np.array([8, 7.1, 45.3]), 0.6, np.array([8.06216455, 2.67439755, 37.17123094])) test_SFC64_noncentral_chisquare( 457, 0.6, np.array([8, 7.1, 45.3]), np.array([1.23557513, 3.84927719, 43.61419849])) @test def test_SFC64_noncentral_f(seed, dfnum, dfden, nonc, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(dfnum, float) or isinstance(dfnum, int)) and ( isinstance(dfden, int) or isinstance(dfden, float)) and (isinstance(nonc, int) or isinstance(nonc, float)): assert gen.noncentral_f(dfnum, dfden, nonc) == expected else: assert (round(gen.noncentral_f(dfnum, dfden, nonc), 8) == expected).all() else: assert (round(gen.noncentral_f(dfnum, dfden, nonc, size), 8) == expected).all() test_SFC64_noncentral_f(874, 3, 20, 3, 1.2543069110903733) test_SFC64_noncentral_f(874, 3, 20, 0, 0.790159454240572) test_SFC64_noncentral_f( 874, np.array([14, 15, 16, 17, 18]), 4.21, 6.7, np.array([10.25330200, 20.13749033, 12.78219243, 15.78411365, 3.22543898])) test_SFC64_noncentral_f( 874, 27, 5.92, 3.1, np.array([4.76909802, 8.23160216, 5.56157716, 6.50176072, 2.50623523]), 5) test_SFC64_noncentral_f( 874, 27, np.array([5.92, 8.13, 9.53, 33.14]), 3.1, np.array([4.76909802, 5.33473529, 3.53537993, 1.94776216])) test_SFC64_noncentral_f( 874, 743, 8.24, np.array([0.11, 0.21, 0.32, 0.43]), np.array([2.86196164, 4.87847860, 3.43786139, 3.98570386])) @test def test_SFC64_normal(seed, expected, loc=0.0, scale=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(loc, float) or isinstance(loc, int)) and (isinstance( scale, float) or isinstance(scale, int)): assert gen.normal(loc, scale) == expected else: assert (round(gen.normal(loc, scale), 8) == expected).all() else: assert (round(gen.normal(loc, scale, size), 8) == expected).all() test_SFC64_normal(1234, -1.42920642141181) test_SFC64_normal(1234, 10.57079357858819, 12) test_SFC64_normal(1234, -174.36318341224083, scale=122) test_SFC64_normal(1234, np.array([-1.42920642, 0.78556612, 0.28750405]), size=3) test_SFC64_normal(1234, np.array([-0.62920642, 1.95556612, 0.41750405, 264.76637000]), loc=np.array([0.8, 1.17, 0.13, 265.45])) test_SFC64_normal(1234, np.array( [-16.86463577, 40.19741841, 17.28761860, -4.40941351]), scale=np.array([11.8, 51.17, 60.13, 6.45])) @test def test_SFC64_pareto(seed, a, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(a, float) or isinstance(a, int): assert gen.pareto(a) == expected else: assert (round(gen.pareto(a), 8) == expected).all() else: assert (round(gen.pareto(a, size), 8) == expected).all() test_SFC64_pareto(1234, 3, 0.5414922795373657) test_SFC64_pareto( 1234, 5, np.array([0.29647699, 0.13971592, 0.00406694, 0.30058308, 0.31654861]), 5) test_SFC64_pareto( 1234, np.array([3, 13, 4, 23.2, 5.6]), np.array([0.54149228, 0.05158614, 0.00508625, 0.05827547, 0.27832148])) @test def test_SFC64_poisson(seed, expected, lam=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(lam, float) or isinstance(lam, int): assert gen.poisson(lam) == expected else: assert (round(gen.poisson(lam), 8) == expected).all() else: assert (round(gen.poisson(lam, size), 8) == expected).all() test_SFC64_poisson(1234, 0, 0) test_SFC64_poisson(1234, 2) test_SFC64_poisson(1234, 3, 3) test_SFC64_poisson(1234, 19, 14.65) test_SFC64_poisson(1234, np.array([43., 7., 10., 65., 23.]), np.array([35.62, 9.23, 9.57, 76.79, 21.74])) test_SFC64_poisson(1234, np.array([857., 809., 837., 886., 788.]), 824.14, 5) @test def test_SFC64_power(seed, a, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(a, float) or isinstance(a, int): assert np.isclose(gen.power(a), expected) else: assert (round(gen.power(a), 8) == expected).all() else: assert (round(gen.power(a, size), 8) == expected).all() test_SFC64_power(1234, 1, 0.7269916449719858) test_SFC64_power(1234, 45.11, 0.992956857625712) test_SFC64_power(1234, 6, np.array([0.94824720, 0.88485292, 0.52138604]), 3) test_SFC64_power( 1234, np.array([5.4, 1.1, 78, 19.34, 99999999999999]), np.array( array([0.94266482, 0.51310462, 0.95113690, 0.98394787, 1.00000000]))) @test def test_SFC64_rayleigh(seed, expected, scale=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(scale, float) or isinstance(scale, int): assert gen.rayleigh(scale) == expected else: assert (round(gen.rayleigh(scale), 8) == expected).all() else: assert (round(gen.rayleigh(scale, size), 8) == expected).all() #test_SFC64_rayleigh(1234, error, -1) test_SFC64_rayleigh(1234, 1.6113676673976456) test_SFC64_rayleigh(1234, 4.834103002192936, 3) test_SFC64_rayleigh(1234, 23.606536327375508, 14.65) test_SFC64_rayleigh(1234, np.array([1.61136767, 1.14358662, 0.20146185, 1.62114986]), size=4) test_SFC64_rayleigh( 1234, np.array([8.70138540, 1.25794529, 15.71402409, 31.35303831, 93.19946494]), np.array([5.4, 1.1, 78, 19.34, 56.2])) @test def test_SFC64_standard_cauchy(seed, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: assert gen.standard_cauchy() == expected else: assert (round(gen.standard_cauchy(size), 8) == round(expected, 8)).all() test_SFC64_standard_cauchy(1234, -1.8193330687397915) test_SFC64_standard_cauchy( 1234, np.array([-1.81933307, -0.42055505, -0.93484213, -3.48517456]), 4) @test def test_SFC64_standard_exponential(seed, expected, size=None, m='zig'): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: assert np.isclose(gen.standard_exponential(method=m), expected) else: assert (round(gen.standard_exponential(size, method=m), 8) == expected).all() test_SFC64_standard_exponential(1234, 1.2982528797672646) test_SFC64_standard_exponential( 1234, np.array([1.29825288, 0.65389518, 0.02029344, 1.31406344]), 4) test_SFC64_standard_exponential(1234, 1.8650987248298696, m='inv') @test def test_SFC64_standard_gamma(seed, shape, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(shape, float) or isinstance(shape, int): assert gen.standard_gamma(shape) == expected else: assert (round(gen.standard_gamma(shape), 8) == expected).all() else: assert (round(gen.standard_gamma(shape, size), 8) == expected).all() test_SFC64_standard_gamma(318, 1, 0.44353979202019395) test_SFC64_standard_gamma(1234, 0, 0) test_SFC64_standard_gamma(1234, 0.5, 1.1793433776641271) test_SFC64_standard_gamma(1234, 3, 0.9474473458925592) test_SFC64_standard_gamma( 1234, 0.5, np.array([1.17934338, 3.31415165, 2.61458827, 0.01842475]), 4) test_SFC64_standard_gamma( 1234, np.array([4.5, 2, 7.7, 81.15]), np.array([1.87721867, 2.06606744, 5.58659139, 87.42655316])) @test def test_SFC64_standard_normal(seed, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: assert gen.standard_normal(size) == expected else: assert (round(gen.standard_normal(size), 8) == expected).all() test_SFC64_standard_normal(1234, -1.42920642141181) test_SFC64_standard_normal(1234, np.array([-1.42920642, 0.78556612, 0.28750405]), 3) @test def test_SFC64_standard_t(seed, df, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if isinstance(df, float) or isinstance(df, int): assert gen.standard_t(df) == expected else: assert (round(gen.standard_t(df), 8) == expected).all() else: assert (round(gen.standard_t(df, size), 8) == expected).all() test_SFC64_standard_t(1234, 3, -1.1701964917825112) test_SFC64_standard_t(1234, 1, -0.5551288173526309) test_SFC64_standard_t(1234, 0.5, -0.46704423557734326) test_SFC64_standard_t(1234, 0.6, np.array([-0.48120758, 204.42340747, -16.42414839]), 3) test_SFC64_standard_t(1234, np.array([99, 5.6, 11.43]), np.array([-1.35730576, -0.93306323, 0.77185391])) @test def test_SFC64_triangular(seed, left, mode, right, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(left, int) or isinstance(left, float)) and (isinstance( mode, int) or isinstance(mode, float)) and (isinstance( right, int) or isinstance(right, float)): assert gen.triangular(left, mode, right) == expected else: assert (round(gen.triangular(left, mode, right), 8) == expected).all() else: assert (round(gen.triangular(left, mode, right, size), 8) == expected).all() test_SFC64_triangular(1234, -3, 0, 8, 4.308181907064803) test_SFC64_triangular(1234, np.array([-1, -4.2, -3.2]), -0.2, 77, np.array([46.46099316, 23.96947246, 12.01013894])) test_SFC64_triangular( 1234, -4, np.array([0.1, 0.5, 3, 6, 7.9]), 8, np.array([4.16819741, 1.64580502, 1.16689514, -1.41563685, 7.73497789])) test_SFC64_triangular(1234, -77, 0, np.array([0.1, 11, 789]), np.array([-6.16767369, -15.87593485, 106.27277449])) test_SFC64_triangular(1234, 2, 10, 53, np.array( [34.57029967, 21.63403897, 14.32154749, 6.76533020]), size=4) @test def test_SFC64_uniform(seed, expected, low=0.0, high=1.0, size=None): gen = rnd.Generator(rnd.SFC64(seed)) result = round(gen.uniform(low, high, size), 8) if size is None: if (isinstance(low, int) or isinstance(low, float)) and (isinstance( high, int) or isinstance(high, float)): assert result == round(expected, 8) else: assert (result == expected).all() else: assert (result == expected).all() test_SFC64_uniform(1234, 13.45119081462231, 5, 15) test_SFC64_uniform(1234, 0.8606071733160079, 0.1) test_SFC64_uniform(1234, 103.10452793839218, high=122) test_SFC64_uniform(1234, np.array([0.84511908, 0.55138007, 0.31781911]), size=3) test_SFC64_uniform(1234, np.array( [38.09231103, 26.15796285, 18.39494535, 9.11499542]), low=np.array([0.4, 3., 6., 7.]), high=45.) test_SFC64_uniform( 1234, np.array([47.32666856, 8.82208109, 13.98404090, 0.17253910, 0.19287074]), high=np.array([56., 16., 44., 3.1, 0.2])) @test def test_SFC64_vonmises(seed, mu, kappa, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(mu, float) or isinstance(mu, int)) and (isinstance( kappa, float) or isinstance(kappa, int)): assert gen.vonmises(mu, kappa) == expected else: assert (round(gen.vonmises(mu, kappa), 8) == expected).all() else: assert (round(gen.vonmises(mu, kappa, size), 8) == expected).all() test_SFC64_vonmises(1234, 0, 4, 0.2704612302733711) test_SFC64_vonmises(1234, 0.1, 0.2, -2.4556551142789758) test_SFC64_vonmises(1234, -1, 0, 2.168447141870805) test_SFC64_vonmises(1234, 0, 5, np.array([0.24236946, -0.35020145, -0.09662924]), size=3) test_SFC64_vonmises( 1234, np.array([43.09, 18.62, 42, 16.94]), 5, np.array([-0.64992769, -0.57975737, -2.07892639, -2.04431317])) test_SFC64_vonmises( 1234, 4, np.array([0, 0.1, 7.67, 99]), np.array([2.16844714, 2.36646913, -1.69291029, -2.42902277])) @test def test_SFC64_wald(seed, mean, scale, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(mean, float) or isinstance(mean, int)) and (isinstance( scale, float) or isinstance(scale, int)): assert gen.wald(mean, scale) == expected else: assert (round(gen.wald(mean, scale), 8) == expected).all() else: assert (round(gen.wald(mean, scale, size), 8) == expected).all() test_SFC64_wald(1234, 0.1, 0.1, 0.02646947813421463) test_SFC64_wald(1234, 3, 2, 0.6175247458060582) test_SFC64_wald(1234, 3, 2, np.array([0.61752475, 2.11337747, 1.27929571]), 3) test_SFC64_wald(1234, np.array([0.1, 0.5, 1, 4]), 0.5, np.array([0.05332567, 0.37543492, 0.37714757, 0.67411925])) test_SFC64_wald(1234, 0.5, np.array([0.1, 0.5, 1, 4]), np.array([0.04121767, 0.37543492, 0.30271246, 0.38842724])) test_SFC64_wald(1234, np.array([0.1, 0.5, 1, 4]), np.array([3, 2, 1, 8]), np.array([0.07708962, 0.43310473, 0.49528816, 2.42348396])) @test def test_SFC64_weibull(seed, a, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(a, float) or isinstance(a, int)): assert gen.weibull(a) == expected else: assert (round(gen.weibull(a), 8) == expected).all() else: assert (round(gen.weibull(a, size), 8) == expected).all() test_SFC64_weibull(1234, 0, 0) test_SFC64_weibull(1234, 0.1, 13.601692306667198) test_SFC64_weibull(1234, 1, 1.2982528797672646) test_SFC64_weibull(1234, 1, np.array([1.29825288, 0.65389518, 0.02029344]), 3) test_SFC64_weibull(1234, np.array([17.8, 4.32]), np.array([1.01477206, 0.90634502])) @test def test_SFC64_zipf(seed, a, expected, size=None): gen = rnd.Generator(rnd.SFC64(seed)) if size is None: if (isinstance(a, float) or isinstance(a, int)): assert gen.zipf(a) == expected else: assert (gen.zipf(a) == expected).all() else: assert (gen.zipf(a, size) == expected).all() test_SFC64_zipf(1234, 1.1, 125898583) test_SFC64_zipf(1234, 3, 2) test_SFC64_zipf(1234, 45, np.array([1, 1, 1]), 3) test_SFC64_zipf(1234, np.array([17.8, 4.32]), np.array([1, 1]))