mirror of https://github.com/exaloop/codon.git
764 lines
25 KiB
Python
764 lines
25 KiB
Python
# Adapted from CPython's cmath module.
|
|
import math
|
|
|
|
e = math.e
|
|
pi = math.pi
|
|
tau = math.tau
|
|
inf = math.inf
|
|
nan = math.nan
|
|
infj = complex(0.0, inf)
|
|
nanj = complex(0.0, nan)
|
|
|
|
# internal constants
|
|
_FLT_RADIX = 2
|
|
_M_LN2 = 0.6931471805599453094 # ln(2)
|
|
_M_LN10 = 2.302585092994045684 # ln(10)
|
|
|
|
@pure
|
|
@llvm
|
|
def _max_float() -> float:
|
|
ret double 0x7FEFFFFFFFFFFFFF
|
|
|
|
@pure
|
|
@llvm
|
|
def _min_float() -> float:
|
|
ret double 0x10000000000000
|
|
|
|
_DBL_MAX = _max_float()
|
|
_DBL_MIN = _min_float()
|
|
_DBL_MANT_DIG = 53
|
|
|
|
_CM_LARGE_DOUBLE = _DBL_MAX/4.
|
|
_CM_SQRT_LARGE_DOUBLE = math.sqrt(_CM_LARGE_DOUBLE)
|
|
_CM_LOG_LARGE_DOUBLE = math.log(_CM_LARGE_DOUBLE)
|
|
_CM_SQRT_DBL_MIN = math.sqrt(_DBL_MIN)
|
|
_CM_SCALE_UP = (2*(_DBL_MANT_DIG // 2) + 1)
|
|
_CM_SCALE_DOWN = (-(_CM_SCALE_UP+1)//2)
|
|
|
|
# special types
|
|
_ST_NINF = 0 # negative infinity
|
|
_ST_NEG = 1 # negative finite number (nonzero)
|
|
_ST_NZERO = 2 # -0.
|
|
_ST_PZERO = 3 # +0.
|
|
_ST_POS = 4 # positive finite number (nonzero)
|
|
_ST_PINF = 5 # positive infinity
|
|
_ST_NAN = 6 # Not a Number
|
|
|
|
def _special_type(d: float):
|
|
if math.isfinite(d):
|
|
if d != 0:
|
|
if math.copysign(1., d) == 1.:
|
|
return _ST_POS
|
|
else:
|
|
return _ST_NEG
|
|
else:
|
|
if math.copysign(1., d) == 1.:
|
|
return _ST_PZERO
|
|
else:
|
|
return _ST_NZERO
|
|
if math.isnan(d):
|
|
return _ST_NAN
|
|
if math.copysign(1., d) == 1.:
|
|
return _ST_PINF
|
|
else:
|
|
return _ST_NINF
|
|
|
|
def _acos_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(P34,INF), C(P,INF), C(P,INF), C(P,-INF), C(P,-INF), C(P34,-INF), C(N,INF),
|
|
C(P12,INF), C(U,U), C(U,U), C(U,U), C(U,U), C(P12,-INF), C(N,N), C(P12,INF),
|
|
C(U,U), C(P12,0.), C(P12,-0.), C(U,U), C(P12,-INF), C(P12,N), C(P12,INF), C(U,U),
|
|
C(P12,0.), C(P12,-0.), C(U,U), C(P12,-INF), C(P12,N), C(P12,INF), C(U,U), C(U,U),
|
|
C(U,U), C(U,U), C(P12,-INF), C(N,N), C(P14,INF), C(0.,INF), C(0.,INF), C(0.,-INF),
|
|
C(0.,-INF), C(P14,-INF), C(N,INF), C(N,INF), C(N,N), C(N,N), C(N,N), C(N,N),
|
|
C(N,-INF), C(N,N))
|
|
return v
|
|
|
|
def _acosh_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(INF,-P34), C(INF,-P), C(INF,-P), C(INF,P), C(INF,P), C(INF,P34), C(INF,N),
|
|
C(INF,-P12), C(U,U), C(U,U), C(U,U), C(U,U), C(INF,P12), C(N,N), C(INF,-P12),
|
|
C(U,U), C(0.,-P12), C(0.,P12), C(U,U), C(INF,P12), C(N,N), C(INF,-P12), C(U,U),
|
|
C(0.,-P12), C(0.,P12), C(U,U), C(INF,P12), C(N,N), C(INF,-P12), C(U,U), C(U,U),
|
|
C(U,U), C(U,U), C(INF,P12), C(N,N), C(INF,-P14), C(INF,-0.), C(INF,-0.), C(INF,0.),
|
|
C(INF,0.), C(INF,P14), C(INF,N), C(INF,N), C(N,N), C(N,N), C(N,N), C(N,N), C(INF,N),
|
|
C(N,N))
|
|
return v
|
|
|
|
def _asinh_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(-INF,-P14), C(-INF,-0.), C(-INF,-0.), C(-INF,0.), C(-INF,0.), C(-INF,P14), C(-INF,N),
|
|
C(-INF,-P12), C(U,U), C(U,U), C(U,U), C(U,U), C(-INF,P12), C(N,N), C(-INF,-P12), C(U,U),
|
|
C(-0.,-0.), C(-0.,0.), C(U,U), C(-INF,P12), C(N,N), C(INF,-P12), C(U,U), C(0.,-0.),
|
|
C(0.,0.), C(U,U), C(INF,P12), C(N,N), C(INF,-P12), C(U,U), C(U,U), C(U,U), C(U,U),
|
|
C(INF,P12), C(N,N), C(INF,-P14), C(INF,-0.), C(INF,-0.), C(INF,0.), C(INF,0.), C(INF,P14),
|
|
C(INF,N), C(INF,N), C(N,N), C(N,-0.), C(N,0.), C(N,N), C(INF,N), C(N,N))
|
|
return v
|
|
|
|
def _atanh_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(-0.,-P12), C(-0.,-P12), C(-0.,-P12), C(-0.,P12), C(-0.,P12), C(-0.,P12), C(-0.,N),
|
|
C(-0.,-P12), C(U,U), C(U,U), C(U,U), C(U,U), C(-0.,P12), C(N,N), C(-0.,-P12), C(U,U),
|
|
C(-0.,-0.), C(-0.,0.), C(U,U), C(-0.,P12), C(-0.,N), C(0.,-P12), C(U,U), C(0.,-0.), C(0.,0.),
|
|
C(U,U), C(0.,P12), C(0.,N), C(0.,-P12), C(U,U), C(U,U), C(U,U), C(U,U), C(0.,P12), C(N,N),
|
|
C(0.,-P12), C(0.,-P12), C(0.,-P12), C(0.,P12), C(0.,P12), C(0.,P12), C(0.,N), C(0.,-P12),
|
|
C(N,N), C(N,N), C(N,N), C(N,N), C(0.,P12), C(N,N))
|
|
return v
|
|
|
|
def _cosh_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(INF,N), C(U,U), C(INF,0.), C(INF,-0.), C(U,U), C(INF,N), C(INF,N), C(N,N), C(U,U), C(U,U),
|
|
C(U,U), C(U,U), C(N,N), C(N,N), C(N,0.), C(U,U), C(1.,0.), C(1.,-0.), C(U,U), C(N,0.), C(N,0.),
|
|
C(N,0.), C(U,U), C(1.,-0.), C(1.,0.), C(U,U), C(N,0.), C(N,0.), C(N,N), C(U,U), C(U,U), C(U,U),
|
|
C(U,U), C(N,N), C(N,N), C(INF,N), C(U,U), C(INF,-0.), C(INF,0.), C(U,U), C(INF,N), C(INF,N),
|
|
C(N,N), C(N,N), C(N,0.), C(N,0.), C(N,N), C(N,N), C(N,N))
|
|
return v
|
|
|
|
def _exp_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(0.,0.), C(U,U), C(0.,-0.), C(0.,0.), C(U,U), C(0.,0.), C(0.,0.), C(N,N), C(U,U), C(U,U), C(U,U),
|
|
C(U,U), C(N,N), C(N,N), C(N,N), C(U,U), C(1.,-0.), C(1.,0.), C(U,U), C(N,N), C(N,N), C(N,N), C(U,U),
|
|
C(1.,-0.), C(1.,0.), C(U,U), C(N,N), C(N,N), C(N,N), C(U,U), C(U,U), C(U,U), C(U,U), C(N,N), C(N,N),
|
|
C(INF,N), C(U,U), C(INF,-0.), C(INF,0.), C(U,U), C(INF,N), C(INF,N), C(N,N), C(N,N), C(N,-0.),
|
|
C(N,0.), C(N,N), C(N,N), C(N,N))
|
|
return v
|
|
|
|
def _log_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(INF,-P34), C(INF,-P), C(INF,-P), C(INF,P), C(INF,P), C(INF,P34), C(INF,N), C(INF,-P12), C(U,U),
|
|
C(U,U), C(U,U), C(U,U), C(INF,P12), C(N,N), C(INF,-P12), C(U,U), C(-INF,-P), C(-INF,P), C(U,U), C(INF,P12),
|
|
C(N,N), C(INF,-P12), C(U,U), C(-INF,-0.), C(-INF,0.), C(U,U), C(INF,P12), C(N,N), C(INF,-P12), C(U,U),
|
|
C(U,U), C(U,U), C(U,U), C(INF,P12), C(N,N), C(INF,-P14), C(INF,-0.), C(INF,-0.), C(INF,0.), C(INF,0.),
|
|
C(INF,P14), C(INF,N), C(INF,N), C(N,N), C(N,N), C(N,N), C(N,N), C(INF,N), C(N,N))
|
|
return v
|
|
|
|
def _sinh_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(INF,N), C(U,U), C(-INF,-0.), C(-INF,0.), C(U,U), C(INF,N), C(INF,N), C(N,N), C(U,U), C(U,U), C(U,U),
|
|
C(U,U), C(N,N), C(N,N), C(0.,N), C(U,U), C(-0.,-0.), C(-0.,0.), C(U,U), C(0.,N), C(0.,N), C(0.,N),
|
|
C(U,U), C(0.,-0.), C(0.,0.), C(U,U), C(0.,N), C(0.,N), C(N,N), C(U,U), C(U,U), C(U,U), C(U,U), C(N,N),
|
|
C(N,N), C(INF,N), C(U,U), C(INF,-0.), C(INF,0.), C(U,U), C(INF,N), C(INF,N), C(N,N), C(N,N), C(N,-0.),
|
|
C(N,0.), C(N,N), C(N,N), C(N,N))
|
|
return v
|
|
|
|
def _sqrt_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(INF,-INF), C(0.,-INF), C(0.,-INF), C(0.,INF), C(0.,INF), C(INF,INF), C(N,INF), C(INF,-INF), C(U,U), C(U,U),
|
|
C(U,U), C(U,U), C(INF,INF), C(N,N), C(INF,-INF), C(U,U), C(0.,-0.), C(0.,0.), C(U,U), C(INF,INF), C(N,N),
|
|
C(INF,-INF), C(U,U), C(0.,-0.), C(0.,0.), C(U,U), C(INF,INF), C(N,N), C(INF,-INF), C(U,U), C(U,U), C(U,U),
|
|
C(U,U), C(INF,INF), C(N,N), C(INF,-INF), C(INF,-0.), C(INF,-0.), C(INF,0.), C(INF,0.), C(INF,INF), C(INF,N),
|
|
C(INF,-INF), C(N,N), C(N,N), C(N,N), C(N,N), C(INF,INF), C(N,N))
|
|
return v
|
|
|
|
def _tanh_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(-1.,0.), C(U,U), C(-1.,-0.), C(-1.,0.), C(U,U), C(-1.,0.), C(-1.,0.), C(N,N), C(U,U), C(U,U), C(U,U),
|
|
C(U,U), C(N,N), C(N,N), C(N,N), C(U,U), C(-0.,-0.), C(-0.,0.), C(U,U), C(N,N), C(N,N), C(N,N), C(U,U),
|
|
C(0.,-0.), C(0.,0.), C(U,U), C(N,N), C(N,N), C(N,N), C(U,U), C(U,U), C(U,U), C(U,U), C(N,N), C(N,N),
|
|
C(1.,0.), C(U,U), C(1.,-0.), C(1.,0.), C(U,U), C(1.,0.), C(1.,0.), C(N,N), C(N,N), C(N,-0.), C(N,0.),
|
|
C(N,N), C(N,N), C(N,N))
|
|
return v
|
|
|
|
def _rect_special():
|
|
P = pi
|
|
P14 = 0.25*pi
|
|
P12 = 0.5*pi
|
|
P34 = 0.75*pi
|
|
INF = inf # Py_HUGE_VAL
|
|
N = nan
|
|
U = -9.5426319407711027e33 # unlikely value, used as placeholder
|
|
def C(a,b): return complex(a, b)
|
|
v = (C(INF,N), C(U,U), C(-INF,0.), C(-INF,-0.), C(U,U), C(INF,N), C(INF,N), C(N,N), C(U,U), C(U,U), C(U,U), C(U,U),
|
|
C(N,N), C(N,N), C(0.,0.), C(U,U), C(-0.,0.), C(-0.,-0.), C(U,U), C(0.,0.), C(0.,0.), C(0.,0.), C(U,U), C(0.,-0.),
|
|
C(0.,0.), C(U,U), C(0.,0.), C(0.,0.), C(N,N), C(U,U), C(U,U), C(U,U), C(U,U), C(N,N), C(N,N), C(INF,N), C(U,U),
|
|
C(INF,-0.), C(INF,0.), C(U,U), C(INF,N), C(INF,N), C(N,N), C(N,N), C(N,0.), C(N,0.), C(N,N), C(N,N), C(N,N))
|
|
return v
|
|
|
|
def _is_special(z):
|
|
return (not math.isfinite(z.real)) or (not math.isfinite(z.imag))
|
|
|
|
def _special_get(z, table):
|
|
t1 = _special_type(z.real)
|
|
t2 = _special_type(z.imag)
|
|
return table[7*t1 + t2]
|
|
|
|
def _sqrt_impl(z):
|
|
if _is_special(z):
|
|
return _special_get(z, _sqrt_special())
|
|
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
if z.real == 0. and z.imag == 0.:
|
|
r_real = 0.
|
|
r_imag = z.imag
|
|
return complex(r_real, r_imag)
|
|
|
|
ax = math.fabs(z.real)
|
|
ay = math.fabs(z.imag)
|
|
s = 0.
|
|
if ax < _DBL_MIN and ay < _DBL_MIN and (ax > 0. or ay > 0.):
|
|
# here we catch cases where hypot(ax, ay) is subnormal
|
|
ax = math.ldexp(ax, _CM_SCALE_UP)
|
|
s = math.ldexp(math.sqrt(ax + math.hypot(ax, math.ldexp(ay, _CM_SCALE_UP))), _CM_SCALE_DOWN)
|
|
else:
|
|
ax /= 8.
|
|
s = 2.*math.sqrt(ax + math.hypot(ax, ay/8.))
|
|
d = ay/(2.*s)
|
|
|
|
if z.real >= 0.:
|
|
r_real = s
|
|
r_imag = math.copysign(d, z.imag)
|
|
else:
|
|
r_real = d
|
|
r_imag = math.copysign(s, z.imag)
|
|
# errno = 0
|
|
return complex(r_real, r_imag)
|
|
|
|
def _acos_impl(z):
|
|
if _is_special(z):
|
|
return _special_get(z, _acos_special())
|
|
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
if math.fabs(z.real) > _CM_LARGE_DOUBLE or math.fabs(z.imag) > _CM_LARGE_DOUBLE:
|
|
# avoid unnecessary overflow for large arguments
|
|
r_real = math.atan2(math.fabs(z.imag), z.real)
|
|
# split into cases to make sure that the branch cut has the
|
|
# correct continuity on systems with unsigned zeros
|
|
if z.real < 0.:
|
|
r_imag = -math.copysign(math.log(math.hypot(z.real/2., z.imag/2.)) + _M_LN2*2, z.imag)
|
|
else:
|
|
r_imag = math.copysign(math.log(math.hypot(z.real/2., z.imag/2.)) + _M_LN2*2, -z.imag)
|
|
else:
|
|
s1 = _sqrt_impl(complex(1. - z.real, -z.imag))
|
|
s2 = _sqrt_impl(complex(1. + z.real, z.imag))
|
|
r_real = 2.*math.atan2(s1.real, s2.real)
|
|
r_imag = math.asinh(s2.real*s1.imag - s2.imag*s1.real)
|
|
return complex(r_real, r_imag)
|
|
|
|
def _acosh_impl(z):
|
|
if _is_special(z):
|
|
return _special_get(z, _acosh_special())
|
|
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
if math.fabs(z.real) > _CM_LARGE_DOUBLE or math.fabs(z.imag) > _CM_LARGE_DOUBLE:
|
|
# avoid unnecessary overflow for large arguments
|
|
r_real = math.log(math.hypot(z.real/2., z.imag/2.)) + _M_LN2*2.
|
|
r_imag = math.atan2(z.imag, z.real)
|
|
else:
|
|
s1 = _sqrt_impl(complex(z.real - 1., z.imag))
|
|
s2 = _sqrt_impl(complex(z.real + 1., z.imag))
|
|
r_real = math.asinh(s1.real*s2.real + s1.imag*s2.imag)
|
|
r_imag = 2.*math.atan2(s1.imag, s2.real)
|
|
return complex(r_real, r_imag)
|
|
|
|
def _asinh_impl(z):
|
|
if _is_special(z):
|
|
return _special_get(z, _asinh_special())
|
|
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
if math.fabs(z.real) > _CM_LARGE_DOUBLE or math.fabs(z.imag) > _CM_LARGE_DOUBLE:
|
|
if z.imag >= 0.:
|
|
r_real = math.copysign(math.log(math.hypot(z.real/2., z.imag/2.)) + _M_LN2*2, z.real)
|
|
else:
|
|
r_real = -math.copysign(math.log(math.hypot(z.real/2., z.imag/2.)) + _M_LN2*2, -z.real)
|
|
r_imag = math.atan2(z.imag, math.fabs(z.real))
|
|
else:
|
|
s1 = _sqrt_impl(complex(1. + z.imag, -z.real))
|
|
s2 = _sqrt_impl(complex(1. - z.imag, z.real))
|
|
r_real = math.asinh(s1.real*s2.imag - s2.real*s1.imag)
|
|
r_imag = math.atan2(z.imag, s1.real*s2.real - s1.imag*s2.imag)
|
|
return complex(r_real, r_imag)
|
|
|
|
def _asin_impl(z):
|
|
s = _asinh_impl(complex(-z.imag, z.real))
|
|
r_real = s.imag
|
|
r_imag = -s.real
|
|
return complex(r_real, r_imag)
|
|
|
|
def _atanh_impl(z):
|
|
if _is_special(z):
|
|
return _special_get(z, _atanh_special())
|
|
|
|
# Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z).
|
|
if z.real < 0.:
|
|
return -_atanh_impl(-z)
|
|
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
ay = math.fabs(z.imag)
|
|
if z.real > _CM_SQRT_LARGE_DOUBLE or ay > _CM_SQRT_LARGE_DOUBLE:
|
|
# if abs(z) is large then we use the approximation
|
|
# atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
|
|
# of z.imag)
|
|
h = math.hypot(z.real/2., z.imag/2.) # safe from overflow
|
|
r_real = z.real/4./h/h
|
|
# the two negations in the next line cancel each other out
|
|
# except when working with unsigned zeros: they're there to
|
|
# ensure that the branch cut has the correct continuity on
|
|
# systems that don't support signed zeros
|
|
r_imag = -math.copysign(pi/2., -z.imag)
|
|
# errno = 0
|
|
elif z.real == 1. and ay < _CM_SQRT_DBL_MIN:
|
|
# C99 standard says: atanh(1+/-0.) should be inf +/- 0i
|
|
if ay == 0.:
|
|
r_real = inf
|
|
r_imag = z.imag
|
|
# errno = EDOM
|
|
else:
|
|
r_real = -math.log(math.sqrt(ay)/math.sqrt(math.hypot(ay, 2.)))
|
|
r_imag = math.copysign(math.atan2(2., -ay)/2, z.imag)
|
|
# errno = 0
|
|
else:
|
|
r_real = math.log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.
|
|
r_imag = -math.atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.
|
|
# errno = 0
|
|
return complex(r_real, r_imag)
|
|
|
|
def _atan_impl(z):
|
|
s = _atanh_impl(complex(-z.imag, z.real))
|
|
r_real = s.imag
|
|
r_imag = -s.real
|
|
return complex(r_real, r_imag)
|
|
|
|
def _cosh_impl(z):
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
# special treatment for cosh(+/-inf + iy) if y is not a NaN
|
|
if (not math.isfinite(z.real)) or (not math.isfinite(z.imag)):
|
|
if math.isinf(z.real) and math.isfinite(z.imag) and z.imag != 0.:
|
|
if z.real > 0:
|
|
r_real = math.copysign(inf, math.cos(z.imag))
|
|
r_imag = math.copysign(inf, math.sin(z.imag))
|
|
else:
|
|
r_real = math.copysign(inf, math.cos(z.imag))
|
|
r_imag = -math.copysign(inf, math.sin(z.imag))
|
|
else:
|
|
r = _special_get(z, _cosh_special())
|
|
r_real = r.real
|
|
r_imag = r.imag
|
|
'''
|
|
/* need to set errno = EDOM if y is +/- infinity and x is not
|
|
a NaN */
|
|
if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
'''
|
|
return complex(r_real, r_imag)
|
|
|
|
if math.fabs(z.real) > _CM_LOG_LARGE_DOUBLE:
|
|
# deal correctly with cases where cosh(z.real) overflows but
|
|
# cosh(z) does not.
|
|
x_minus_one = z.real - math.copysign(1., z.real)
|
|
r_real = math.cos(z.imag) * math.cosh(x_minus_one) * e
|
|
r_imag = math.sin(z.imag) * math.sinh(x_minus_one) * e
|
|
else:
|
|
r_real = math.cos(z.imag) * math.cosh(z.real)
|
|
r_imag = math.sin(z.imag) * math.sinh(z.real)
|
|
'''
|
|
/* detect overflow, and set errno accordingly */
|
|
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|
errno = ERANGE;
|
|
else
|
|
errno = 0;
|
|
'''
|
|
return complex(r_real, r_imag)
|
|
|
|
def _cos_impl(z):
|
|
r = _cosh_impl(complex(-z.imag, z.real))
|
|
return r
|
|
|
|
def _exp_impl(z):
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
if (not math.isfinite(z.real)) or (not math.isfinite(z.imag)):
|
|
if math.isinf(z.real) and math.isfinite(z.imag) and z.imag != 0.:
|
|
if z.real > 0:
|
|
r_real = math.copysign(inf, math.cos(z.imag))
|
|
r_imag = math.copysign(inf, math.sin(z.imag))
|
|
else:
|
|
r_real = math.copysign(0., math.cos(z.imag))
|
|
r_imag = math.copysign(0., math.sin(z.imag))
|
|
else:
|
|
r = _special_get(z, _exp_special())
|
|
r_real = r.real
|
|
r_imag = r.imag
|
|
'''
|
|
/* need to set errno = EDOM if y is +/- infinity and x is not
|
|
a NaN and not -infinity */
|
|
if (Py_IS_INFINITY(z.imag) &&
|
|
(Py_IS_FINITE(z.real) ||
|
|
(Py_IS_INFINITY(z.real) && z.real > 0)))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
'''
|
|
return complex(r_real, r_imag)
|
|
|
|
if z.real > _CM_LOG_LARGE_DOUBLE:
|
|
l = math.exp(z.real - 1.)
|
|
r_real = l*math.cos(z.imag)*e
|
|
r_imag = l*math.sin(z.imag)*e
|
|
else:
|
|
l = math.exp(z.real)
|
|
r_real = l*math.cos(z.imag)
|
|
r_imag = l*math.sin(z.imag)
|
|
'''
|
|
/* detect overflow, and set errno accordingly */
|
|
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|
errno = ERANGE;
|
|
else
|
|
errno = 0;
|
|
'''
|
|
return complex(r_real, r_imag)
|
|
|
|
def _c_log(z):
|
|
if _is_special(z):
|
|
return _special_get(z, _log_special())
|
|
|
|
ax = math.fabs(z.real)
|
|
ay = math.fabs(z.imag)
|
|
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
if ax > _CM_LARGE_DOUBLE or ay > _CM_LARGE_DOUBLE:
|
|
r_real = math.log(math.hypot(ax/2., ay/2.)) + _M_LN2
|
|
elif ax < _DBL_MIN and ay < _DBL_MIN:
|
|
if ax > 0. or ay > 0.:
|
|
# catch cases where hypot(ax, ay) is subnormal
|
|
r_real = math.log(math.hypot(math.ldexp(ax, _DBL_MANT_DIG), math.ldexp(ay, _DBL_MANT_DIG))) - _DBL_MANT_DIG*_M_LN2
|
|
else:
|
|
# log(+/-0. +/- 0i)
|
|
r_real = -inf
|
|
r_imag = math.atan2(z.imag, z.real)
|
|
# errno = EDOM
|
|
return complex(r_real, r_imag)
|
|
else:
|
|
h = math.hypot(ax, ay)
|
|
if 0.71 <= h <= 1.73:
|
|
am = max(ax, ay)
|
|
an = min(ax, ay)
|
|
r_real = math.log1p((am-1)*(am+1) + an*an)/2.
|
|
else:
|
|
r_real = math.log(h)
|
|
r_imag = math.atan2(z.imag, z.real)
|
|
# errno = 0
|
|
return complex(r_real, r_imag)
|
|
|
|
def _log10_impl(z):
|
|
s = _c_log(z)
|
|
return complex(s.real / _M_LN10, s.imag / _M_LN10)
|
|
|
|
def _sinh_impl(z):
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
if (not math.isfinite(z.real)) or (not math.isfinite(z.imag)):
|
|
if math.isinf(z.real) and math.isfinite(z.imag) and z.imag != 0.:
|
|
if z.real > 0:
|
|
r_real = math.copysign(inf, math.cos(z.imag))
|
|
r_imag = math.copysign(inf, math.sin(z.imag))
|
|
else:
|
|
r_real = -math.copysign(inf, math.cos(z.imag))
|
|
r_imag = math.copysign(inf, math.sin(z.imag))
|
|
else:
|
|
r = _special_get(z, _sinh_special())
|
|
r_real = r.real
|
|
r_imag = r.imag
|
|
'''
|
|
/* need to set errno = EDOM if y is +/- infinity and x is not
|
|
a NaN */
|
|
if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
'''
|
|
return complex(r_real, r_imag)
|
|
|
|
if math.fabs(z.real) > _CM_LOG_LARGE_DOUBLE:
|
|
x_minus_one = z.real - math.copysign(1., z.real)
|
|
r_real = math.cos(z.imag) * math.sinh(x_minus_one) * e
|
|
r_imag = math.sin(z.imag) * math.cosh(x_minus_one) * e
|
|
else:
|
|
r_real = math.cos(z.imag) * math.sinh(z.real)
|
|
r_imag = math.sin(z.imag) * math.cosh(z.real)
|
|
'''
|
|
/* detect overflow, and set errno accordingly */
|
|
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|
errno = ERANGE;
|
|
else
|
|
errno = 0;
|
|
'''
|
|
return complex(r_real, r_imag)
|
|
|
|
def _sin_impl(z):
|
|
s = _sinh_impl(complex(-z.imag, z.real))
|
|
r = complex(s.imag, -s.real)
|
|
return r
|
|
|
|
def _tanh_impl(z):
|
|
r_real = 0.
|
|
r_imag = 0.
|
|
# special treatment for tanh(+/-inf + iy) if y is finite and
|
|
# nonzero
|
|
if (not math.isfinite(z.real)) or (not math.isfinite(z.imag)):
|
|
if math.isinf(z.real) and math.isfinite(z.imag) and z.imag != 0.:
|
|
if z.real > 0:
|
|
r_real = 1.0
|
|
r_imag = math.copysign(0., 2.*math.sin(z.imag)*math.cos(z.imag))
|
|
else:
|
|
r_real = -1.0
|
|
r_imag = math.copysign(0., 2.*math.sin(z.imag)*math.cos(z.imag))
|
|
else:
|
|
r = _special_get(z, _tanh_special())
|
|
r_real = r.real
|
|
r_imag = r.imag
|
|
'''
|
|
/* need to set errno = EDOM if z.imag is +/-infinity and
|
|
z.real is finite */
|
|
if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
'''
|
|
return complex(r_real, r_imag)
|
|
|
|
# danger of overflow in 2.*z.imag !
|
|
if math.fabs(z.real) > _CM_LOG_LARGE_DOUBLE:
|
|
r_real = math.copysign(1., z.real)
|
|
r_imag = 4.*math.sin(z.imag)*math.cos(z.imag)*math.exp(-2.*math.fabs(z.real))
|
|
else:
|
|
tx = math.tanh(z.real)
|
|
ty = math.tan(z.imag)
|
|
cx = 1./math.cosh(z.real)
|
|
txty = tx*ty
|
|
denom = 1. + txty*txty
|
|
r_real = tx*(1. + ty*ty)/denom
|
|
r_imag = ((ty/denom)*cx)*cx
|
|
# errno = 0
|
|
return complex(r_real, r_imag)
|
|
|
|
def _tan_impl(z):
|
|
s = _tanh_impl(complex(-z.imag, z.real))
|
|
r = complex(s.imag, -s.real)
|
|
return r
|
|
|
|
def phase(x):
|
|
z = complex(x)
|
|
return z._phase()
|
|
|
|
def polar(x):
|
|
z = complex(x)
|
|
return complex(x)._polar()
|
|
|
|
def rect(r, phi):
|
|
z_real = 0.
|
|
z_imag = 0.
|
|
if (not math.isfinite(r)) or (not math.isfinite(phi)):
|
|
# if r is +/-infinity and phi is finite but nonzero then
|
|
# result is (+-INF +-INF i), but we need to compute cos(phi)
|
|
# and sin(phi) to figure out the signs.
|
|
if math.isinf(r) and (math.isfinite(phi) and phi != 0.):
|
|
if r > 0:
|
|
z_real = math.copysign(inf, math.cos(phi))
|
|
z_imag = math.copysign(inf, math.sin(phi))
|
|
else:
|
|
z_real = -math.copysign(inf, math.cos(phi))
|
|
z_imag = -math.copysign(inf, math.sin(phi))
|
|
else:
|
|
z = _special_get(complex(r, phi), _rect_special())
|
|
z_real = z.real
|
|
z_imag = z.imag
|
|
'''
|
|
/* need to set errno = EDOM if r is a nonzero number and phi
|
|
is infinite */
|
|
if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
'''
|
|
elif phi == 0.0:
|
|
# Workaround for buggy results with phi=-0.0 on OS X 10.8. See
|
|
# bugs.python.org/issue18513.
|
|
z_real = r
|
|
z_imag = r * phi
|
|
# errno = 0
|
|
else:
|
|
z_real = r * math.cos(phi)
|
|
z_imag = r * math.sin(phi)
|
|
# errno = 0
|
|
return complex(z_real, z_imag)
|
|
|
|
def exp(x):
|
|
z = complex(x)
|
|
return _exp_impl(z)
|
|
|
|
def log(x, base = e):
|
|
z = complex(x)
|
|
y = complex(base)
|
|
r = _c_log(z)
|
|
if y == complex(e, 0.0):
|
|
return r
|
|
else:
|
|
return r/_c_log(y)
|
|
|
|
def log10(x):
|
|
z = complex(x)
|
|
return _log10_impl(z)
|
|
|
|
def sqrt(x):
|
|
z = complex(x)
|
|
return _sqrt_impl(z)
|
|
|
|
def asin(x):
|
|
z = complex(x)
|
|
return _asin_impl(z)
|
|
|
|
def acos(x):
|
|
z = complex(x)
|
|
return _acos_impl(z)
|
|
|
|
def atan(x):
|
|
z = complex(x)
|
|
return _atan_impl(z)
|
|
|
|
def sin(x):
|
|
z = complex(x)
|
|
return _sin_impl(z)
|
|
|
|
def cos(x):
|
|
z = complex(x)
|
|
return _cos_impl(z)
|
|
|
|
def tan(x):
|
|
z = complex(x)
|
|
return _tan_impl(z)
|
|
|
|
def asinh(x):
|
|
z = complex(x)
|
|
return _asinh_impl(z)
|
|
|
|
def acosh(x):
|
|
z = complex(x)
|
|
return _acosh_impl(z)
|
|
|
|
def atanh(x):
|
|
z = complex(x)
|
|
return _atanh_impl(z)
|
|
|
|
def sinh(x):
|
|
z = complex(x)
|
|
return _sinh_impl(z)
|
|
|
|
def cosh(x):
|
|
z = complex(x)
|
|
return _cosh_impl(z)
|
|
|
|
def tanh(x):
|
|
z = complex(x)
|
|
return _tanh_impl(z)
|
|
|
|
def isfinite(x):
|
|
z = complex(x)
|
|
return math.isfinite(z.real) and math.isfinite(z.imag)
|
|
|
|
def isinf(x):
|
|
z = complex(x)
|
|
return math.isinf(z.real) or math.isinf(z.imag)
|
|
|
|
def isnan(x):
|
|
z = complex(x)
|
|
return math.isnan(z.real) or math.isnan(z.imag)
|
|
|
|
def isclose(a, b, rel_tol: float = 1e-09, abs_tol: float = 0.0):
|
|
if rel_tol < 0. or abs_tol < 0.:
|
|
raise ValueError("tolerances must be non-negative")
|
|
|
|
x = complex(a)
|
|
y = complex(b)
|
|
|
|
if x.real == y.real and x.imag == y.imag:
|
|
return True
|
|
|
|
if (math.isinf(x.real) or math.isinf(x.imag) or
|
|
math.isinf(y.real) or math.isinf(y.imag)):
|
|
return False
|
|
|
|
diff = abs(x - y)
|
|
return (((diff <= rel_tol * abs(y)) or
|
|
(diff <= rel_tol * abs(x))) or
|
|
(diff <= abs_tol))
|