codon/bench/taq/taq.cpp

132 lines
3.5 KiB
C++

#include <algorithm>
#include <chrono>
#include <cmath>
#include <fstream>
#include <iostream>
#include <numeric>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
namespace {
template <typename It> double mean(It begin, It end) {
double sum = std::accumulate(begin, end, 0.0);
double mean = sum / std::distance(begin, end);
return mean;
}
template <typename It> double stdev(It begin, It end) {
auto n = std::distance(begin, end);
double sum = std::accumulate(begin, end, 0.0);
double mean = sum / n;
double sq_sum = std::inner_product(begin, end, begin, 0.0);
double stdev = std::sqrt(sq_sum / n - mean * mean);
return stdev;
}
std::vector<int> find_peaks(const std::vector<double> &y) {
int lag = 100;
double threshold = 10.0;
double influence = 0.5;
int t = y.size();
std::vector<int> signals(t);
if (t <= lag)
return signals;
std::vector<double> filtered_y;
filtered_y.reserve(t);
for (int i = 0; i < t; i++)
filtered_y.push_back(i < lag ? y[i] : 0.0);
std::vector<double> avg_filter(t);
std::vector<double> std_filter(t);
avg_filter[lag] = mean(y.begin(), y.begin() + lag);
avg_filter[lag] = stdev(y.begin(), y.begin() + lag);
for (int i = lag; i < t; i++) {
if (std::abs(y[i] - avg_filter[i - 1]) > threshold * std_filter[i - 1]) {
signals[i] = y[i] > avg_filter[i - 1] ? +1 : -1;
filtered_y[i] = influence * y[i] + (1 - influence) * filtered_y[i - 1];
} else {
signals[i] = 0;
filtered_y[i] = y[i];
}
avg_filter[i] = mean(filtered_y.begin() + (i - lag), filtered_y.begin() + i);
std_filter[i] = stdev(filtered_y.begin() + (i - lag), filtered_y.begin() + i);
}
return signals;
}
std::pair<std::vector<double>, std::vector<int>>
process_data(const std::vector<std::pair<uint64_t, long>> &series) {
std::unordered_map<uint64_t, long> grouped;
for (const auto &p : series) {
auto bucket = p.first;
auto volume = p.second;
grouped[bucket] += volume;
}
std::vector<std::pair<uint64_t, long>> temp;
temp.reserve(grouped.size());
for (const auto &p : grouped)
temp.emplace_back(p.first, p.second);
std::sort(temp.begin(), temp.end());
std::vector<double> y;
y.reserve(grouped.size());
for (const auto &p : temp)
y.push_back(p.second);
return {y, find_peaks(y)};
}
const uint64_t BUCKET_SIZE = 1000000000;
} // namespace
int main(int argc, char *argv[]) {
using clock = std::chrono::high_resolution_clock;
using std::chrono::duration_cast;
using std::chrono::milliseconds;
auto t = clock::now();
std::unordered_map<std::string, std::vector<std::pair<uint64_t, long>>> data;
std::ifstream file(argv[1]);
bool header = true;
for (std::string line; std::getline(file, line);) {
if (header) {
header = false;
continue;
}
std::stringstream ss(line);
std::vector<std::string> x;
for (std::string field; std::getline(ss, field, '|');)
x.push_back(field);
if (x[0] == "END" || x[4] == "ENDP")
continue;
uint64_t timestamp = std::stoull(x[0]);
std::string symbol = x[2];
long volume = std::stol(x[4]);
data[symbol].emplace_back(timestamp / BUCKET_SIZE, volume);
}
for (auto &e : data) {
auto symbol = e.first;
auto &series = e.second;
auto p = process_data(series);
auto &signals = p.second;
std::cout << symbol << " " << std::reduce(signals.begin(), signals.end())
<< std::endl;
}
std::cout << (duration_cast<milliseconds>(clock::now() - t).count() / 1e3)
<< std::endl;
}