codon/codon/runtime/lib.cpp

382 lines
8.8 KiB
C++

// Copyright (C) 2022 Exaloop Inc. <https://exaloop.io>
#include <cassert>
#include <cerrno>
#include <chrono>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <fmt/format.h>
#include <fstream>
#include <iostream>
#include <mutex>
#include <sstream>
#include <string>
#include <thread>
#include <unistd.h>
#include <unwind.h>
#include <vector>
#define GC_THREADS
#include "codon/runtime/lib.h"
#include <gc.h>
/*
* General
*/
// OpenMP patch with GC callbacks
typedef int (*gc_setup_callback)(GC_stack_base *);
typedef void (*gc_roots_callback)(void *, void *);
extern "C" void __kmpc_set_gc_callbacks(gc_setup_callback get_stack_base,
gc_setup_callback register_thread,
gc_roots_callback add_roots,
gc_roots_callback del_roots);
void seq_exc_init();
#ifdef CODON_GPU
void seq_nvptx_init();
#endif
int seq_flags;
SEQ_FUNC void seq_init(int flags) {
GC_INIT();
GC_set_warn_proc(GC_ignore_warn_proc);
GC_allow_register_threads();
__kmpc_set_gc_callbacks(GC_get_stack_base, (gc_setup_callback)GC_register_my_thread,
GC_add_roots, GC_remove_roots);
seq_exc_init();
#ifdef CODON_GPU
seq_nvptx_init();
#endif
seq_flags = flags;
}
SEQ_FUNC bool seq_is_macos() {
#ifdef __APPLE__
return true;
#else
return false;
#endif
}
SEQ_FUNC seq_int_t seq_pid() { return (seq_int_t)getpid(); }
SEQ_FUNC seq_int_t seq_time() {
auto duration = std::chrono::system_clock::now().time_since_epoch();
seq_int_t nanos =
std::chrono::duration_cast<std::chrono::nanoseconds>(duration).count();
return nanos;
}
SEQ_FUNC seq_int_t seq_time_monotonic() {
auto duration = std::chrono::steady_clock::now().time_since_epoch();
seq_int_t nanos =
std::chrono::duration_cast<std::chrono::nanoseconds>(duration).count();
return nanos;
}
SEQ_FUNC seq_int_t seq_time_highres() {
auto duration = std::chrono::high_resolution_clock::now().time_since_epoch();
seq_int_t nanos =
std::chrono::duration_cast<std::chrono::nanoseconds>(duration).count();
return nanos;
}
static void copy_time_c_to_seq(struct tm *x, seq_time_t *output) {
output->year = x->tm_year;
output->yday = x->tm_yday;
output->sec = x->tm_sec;
output->min = x->tm_min;
output->hour = x->tm_hour;
output->mday = x->tm_mday;
output->mon = x->tm_mon;
output->wday = x->tm_wday;
output->isdst = x->tm_isdst;
}
static void copy_time_seq_to_c(seq_time_t *x, struct tm *output) {
output->tm_year = x->year;
output->tm_yday = x->yday;
output->tm_sec = x->sec;
output->tm_min = x->min;
output->tm_hour = x->hour;
output->tm_mday = x->mday;
output->tm_mon = x->mon;
output->tm_wday = x->wday;
output->tm_isdst = x->isdst;
}
SEQ_FUNC bool seq_localtime(seq_int_t secs, seq_time_t *output) {
struct tm result;
time_t now = (secs >= 0 ? secs : time(nullptr));
if (now == (time_t)-1 || !localtime_r(&now, &result))
return false;
copy_time_c_to_seq(&result, output);
return true;
}
SEQ_FUNC bool seq_gmtime(seq_int_t secs, seq_time_t *output) {
struct tm result;
time_t now = (secs >= 0 ? secs : time(nullptr));
if (now == (time_t)-1 || !gmtime_r(&now, &result))
return false;
copy_time_c_to_seq(&result, output);
return true;
}
SEQ_FUNC seq_int_t seq_mktime(seq_time_t *time) {
struct tm result;
copy_time_seq_to_c(time, &result);
return mktime(&result);
}
SEQ_FUNC void seq_sleep(double secs) {
std::this_thread::sleep_for(std::chrono::duration<double, std::ratio<1>>(secs));
}
extern char **environ;
SEQ_FUNC char **seq_env() { return environ; }
/*
* GC
*/
#define USE_STANDARD_MALLOC 0
SEQ_FUNC void *seq_alloc(size_t n) {
#if USE_STANDARD_MALLOC
return malloc(n);
#else
return GC_MALLOC(n);
#endif
}
SEQ_FUNC void *seq_alloc_atomic(size_t n) {
#if USE_STANDARD_MALLOC
return malloc(n);
#else
return GC_MALLOC_ATOMIC(n);
#endif
}
SEQ_FUNC void *seq_calloc(size_t m, size_t n) {
#if USE_STANDARD_MALLOC
return calloc(m, n);
#else
size_t s = m * n;
void *p = GC_MALLOC(s);
memset(p, 0, s);
return p;
#endif
}
SEQ_FUNC void *seq_calloc_atomic(size_t m, size_t n) {
#if USE_STANDARD_MALLOC
return calloc(m, n);
#else
size_t s = m * n;
void *p = GC_MALLOC_ATOMIC(s);
memset(p, 0, s);
return p;
#endif
}
SEQ_FUNC void *seq_realloc(void *p, size_t newsize, size_t oldsize) {
#if USE_STANDARD_MALLOC
return realloc(p, newsize);
#else
return GC_REALLOC(p, newsize);
#endif
}
SEQ_FUNC void seq_free(void *p) {
#if USE_STANDARD_MALLOC
free(p);
#else
GC_FREE(p);
#endif
}
SEQ_FUNC void seq_register_finalizer(void *p, void (*f)(void *obj, void *data)) {
#if !USE_STANDARD_MALLOC
GC_REGISTER_FINALIZER(p, f, nullptr, nullptr, nullptr);
#endif
}
SEQ_FUNC void seq_gc_add_roots(void *start, void *end) {
#if !USE_STANDARD_MALLOC
GC_add_roots(start, end);
#endif
}
SEQ_FUNC void seq_gc_remove_roots(void *start, void *end) {
#if !USE_STANDARD_MALLOC
GC_remove_roots(start, end);
#endif
}
SEQ_FUNC void seq_gc_clear_roots() {
#if !USE_STANDARD_MALLOC
GC_clear_roots();
#endif
}
SEQ_FUNC void seq_gc_exclude_static_roots(void *start, void *end) {
#if !USE_STANDARD_MALLOC
GC_exclude_static_roots(start, end);
#endif
}
/*
* String conversion
*/
static seq_str_t string_conv(const std::string &s) {
auto n = s.size();
auto *p = (char *)seq_alloc_atomic(n);
memcpy(p, s.data(), n);
return {(seq_int_t)n, p};
}
template <typename T> std::string default_format(T n) {
return fmt::format(FMT_STRING("{}"), n);
}
template <> std::string default_format(double n) {
return fmt::format(FMT_STRING("{:g}"), n);
}
template <typename T> seq_str_t fmt_conv(T n, seq_str_t format, bool *error) {
*error = false;
try {
if (format.len == 0) {
return string_conv(default_format(n));
} else {
std::string fstr(format.str, format.len);
return string_conv(
fmt::format(fmt::runtime(fmt::format(FMT_STRING("{{:{}}}"), fstr)), n));
}
} catch (const std::runtime_error &f) {
*error = true;
return string_conv(f.what());
}
}
SEQ_FUNC seq_str_t seq_str_int(seq_int_t n, seq_str_t format, bool *error) {
return fmt_conv<seq_int_t>(n, format, error);
}
SEQ_FUNC seq_str_t seq_str_uint(seq_int_t n, seq_str_t format, bool *error) {
return fmt_conv<uint64_t>(n, format, error);
}
SEQ_FUNC seq_str_t seq_str_float(double f, seq_str_t format, bool *error) {
return fmt_conv<double>(f, format, error);
}
SEQ_FUNC seq_str_t seq_str_ptr(void *p, seq_str_t format, bool *error) {
return fmt_conv(fmt::ptr(p), format, error);
}
SEQ_FUNC seq_str_t seq_str_str(seq_str_t s, seq_str_t format, bool *error) {
std::string t(s.str, s.len);
return fmt_conv(t, format, error);
}
/*
* General I/O
*/
SEQ_FUNC seq_str_t seq_check_errno() {
if (errno) {
std::string msg = strerror(errno);
auto *buf = (char *)seq_alloc_atomic(msg.size());
memcpy(buf, msg.data(), msg.size());
return {(seq_int_t)msg.size(), buf};
}
return {0, nullptr};
}
SEQ_FUNC void seq_print(seq_str_t str) { seq_print_full(str, stdout); }
static std::ostringstream capture;
static std::mutex captureLock;
SEQ_FUNC void seq_print_full(seq_str_t str, FILE *fo) {
if ((seq_flags & SEQ_FLAG_CAPTURE_OUTPUT) && (fo == stdout || fo == stderr)) {
captureLock.lock();
capture.write(str.str, str.len);
captureLock.unlock();
} else {
fwrite(str.str, 1, (size_t)str.len, fo);
}
}
std::string codon::runtime::getCapturedOutput() {
std::string result = capture.str();
capture.str("");
return result;
}
SEQ_FUNC void *seq_stdin() { return stdin; }
SEQ_FUNC void *seq_stdout() { return stdout; }
SEQ_FUNC void *seq_stderr() { return stderr; }
/*
* Threading
*/
SEQ_FUNC void *seq_lock_new() {
return (void *)new (seq_alloc_atomic(sizeof(std::timed_mutex))) std::timed_mutex();
}
SEQ_FUNC bool seq_lock_acquire(void *lock, bool block, double timeout) {
auto *m = (std::timed_mutex *)lock;
if (timeout < 0.0) {
if (block) {
m->lock();
return true;
} else {
return m->try_lock();
}
} else {
return m->try_lock_for(std::chrono::duration<double>(timeout));
}
}
SEQ_FUNC void seq_lock_release(void *lock) {
auto *m = (std::timed_mutex *)lock;
m->unlock();
}
SEQ_FUNC void *seq_rlock_new() {
return (void *)new (seq_alloc_atomic(sizeof(std::recursive_timed_mutex)))
std::recursive_timed_mutex();
}
SEQ_FUNC bool seq_rlock_acquire(void *lock, bool block, double timeout) {
auto *m = (std::recursive_timed_mutex *)lock;
if (timeout < 0.0) {
if (block) {
m->lock();
return true;
} else {
return m->try_lock();
}
} else {
return m->try_lock_for(std::chrono::duration<double>(timeout));
}
}
SEQ_FUNC void seq_rlock_release(void *lock) {
auto *m = (std::recursive_timed_mutex *)lock;
m->unlock();
}