deep-person-reid/torchreid/data_manager.py

148 lines
6.1 KiB
Python
Raw Normal View History

2018-11-06 05:19:27 +08:00
from __future__ import absolute_import
from __future__ import print_function
from torch.utils.data import DataLoader
2018-11-07 23:36:49 +08:00
from .dataset_loader import ImageDataset, VideoDataset
2018-11-06 05:19:27 +08:00
from .datasets import init_imgreid_dataset, init_vidreid_dataset
class ImageDataManager(object):
def __init__(self, train_names, test_names, root, split_id,
transform_train, transform_test, train_batch, test_batch,
workers, pin_memory, **kwargs):
self.train_names = train_names
self.test_names = test_names
2018-11-06 05:19:27 +08:00
self.train = []
self.num_train_pids = 0
self.num_train_cams = 0
print("=> Initializing TRAIN datasets")
for name in self.train_names:
dataset = init_imgreid_dataset(root=root, name=name, split_id=split_id, **kwargs)
for img_path, pid, camid in dataset.train:
pid += self.num_train_pids
camid += self.num_train_cams
self.train.append((img_path, pid, camid))
self.num_train_pids += dataset.num_train_pids
self.num_train_cams += dataset.num_train_cams
self.trainloader = DataLoader(
ImageDataset(self.train, transform=transform_train),
batch_size=train_batch, shuffle=True, num_workers=workers,
pin_memory=pin_memory, drop_last=True
)
print("=> Initializing TEST datasets")
self.testloader_dict = {name: {'query': None, 'gallery': None} for name in self.test_names}
for name in self.test_names:
dataset = init_imgreid_dataset(root=root, name=name, split_id=split_id, **kwargs)
self.testloader_dict[name]['query'] = DataLoader(
ImageDataset(dataset.query, transform=transform_test),
batch_size=test_batch, shuffle=False, num_workers=workers,
pin_memory=pin_memory, drop_last=False
)
self.testloader_dict[name]['gallery'] = DataLoader(
ImageDataset(dataset.gallery, transform=transform_test),
batch_size=test_batch, shuffle=False, num_workers=workers,
pin_memory=pin_memory, drop_last=False
)
print("\n")
print(" **************** Summary ****************")
print(" train names : {}".format(self.train_names))
print(" # train datasets : {}".format(len(self.train_names)))
print(" # train ids : {}".format(self.num_train_pids))
print(" # train images : {}".format(len(self.train)))
print(" # train cameras : {}".format(self.num_train_cams))
print(" test names : {}".format(self.test_names))
2018-11-06 05:36:12 +08:00
print(" *****************************************")
2018-11-07 23:36:49 +08:00
print("\n")
class VideoDataManager(object):
def __init__(self, train_names, test_names, root, split_id,
transform_train, transform_test, train_batch, test_batch,
workers, pin_memory, seq_len, sample, image_training=True, **kwargs):
self.train_names = train_names
self.test_names = test_names
self.train = []
self.num_train_pids = 0
self.num_train_cams = 0
print("=> Initializing TRAIN datasets")
for name in self.train_names:
dataset = init_vidreid_dataset(root=root, name=name, split_id=split_id, **kwargs)
for img_paths, pid, camid in dataset.train:
pid += self.num_train_pids
camid += self.num_train_cams
if image_training:
# decompose tracklets into images
for img_path in img_paths:
self.train.append((img_path, pid, camid))
else:
self.train.append((img_paths, pid, camid))
self.num_train_pids += dataset.num_train_pids
self.num_train_cams += dataset.num_train_cams
if image_training:
# each batch has image data of shape (batch, channel, height, width)
self.trainloader = DataLoader(
ImageDataset(self.train, transform=transform_train),
batch_size=train_batch, shuffle=True, num_workers=workers,
pin_memory=pin_memory, drop_last=True
)
else:
# each batch has image data of shape (batch, seq_len, channel, height, width)
self.trainloader = DataLoader(
VideoDataset(self.train, seq_len=seq_len, sample=sample, transform=transform_test),
batch_size=train_batch, shuffle=True, num_workers=workers,
pin_memory=pin_memory, drop_last=True
)
print("=> Initializing TEST datasets")
self.testloader_dict = {name: {'query': None, 'gallery': None} for name in self.test_names}
for name in self.test_names:
dataset = init_vidreid_dataset(root=root, name=name, split_id=split_id, **kwargs)
self.testloader_dict[name]['query'] = DataLoader(
VideoDataset(dataset.query, seq_len=seq_len, sample=sample, transform=transform_test),
batch_size=test_batch, shuffle=False, num_workers=workers,
pin_memory=pin_memory, drop_last=False,
)
self.testloader_dict[name]['gallery'] = DataLoader(
VideoDataset(dataset.query, seq_len=seq_len, sample=sample, transform=transform_test),
batch_size=test_batch, shuffle=False, num_workers=workers,
pin_memory=pin_memory, drop_last=False,
)
print("\n")
print(" **************** Summary ****************")
print(" train names : {}".format(self.train_names))
print(" # train datasets : {}".format(len(self.train_names)))
print(" # train ids : {}".format(self.num_train_pids))
if image_training:
print(" # train images : {}".format(len(self.train)))
else:
print(" # train tracklets: {}".format(len(self.train)))
print(" # train cameras : {}".format(self.num_train_cams))
print(" test names : {}".format(self.test_names))
print(" *****************************************")
2018-11-06 05:36:12 +08:00
print("\n")