104 lines
3.6 KiB
Python
104 lines
3.6 KiB
Python
|
from __future__ import absolute_import
|
||
|
import os
|
||
|
import glob
|
||
|
import re
|
||
|
import sys
|
||
|
import os.path as osp
|
||
|
|
||
|
"""Dataset classes"""
|
||
|
|
||
|
class Market1501(object):
|
||
|
"""
|
||
|
Market1501
|
||
|
|
||
|
Reference:
|
||
|
Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015.
|
||
|
==========================
|
||
|
Dataset statistics:
|
||
|
# identities: 1501 (+1 for background)
|
||
|
# images: 12936 (train) + 3368 (query) + 15913 (gallery) =
|
||
|
"""
|
||
|
root = './data/market1501'
|
||
|
train_dir = osp.join(root, 'bounding_box_train')
|
||
|
query_dir = osp.join(root, 'query')
|
||
|
gallery_dir = osp.join(root, 'bounding_box_test')
|
||
|
|
||
|
def __init__(self):
|
||
|
self._check_dir(self.root)
|
||
|
self._check_dir(self.train_dir)
|
||
|
self._check_dir(self.query_dir)
|
||
|
self._check_dir(self.gallery_dir)
|
||
|
|
||
|
train, num_train_pids, num_train_imgs = self._process_dir(self.train_dir, relabel=True)
|
||
|
query, num_query_pids, num_query_imgs = self._process_dir(self.query_dir, relabel=False)
|
||
|
gallery, num_gallery_pids, num_gallery_imgs = self._process_dir(self.gallery_dir, relabel=False)
|
||
|
num_total_pids = num_train_pids + num_query_pids
|
||
|
num_total_imgs = num_train_imgs + num_query_imgs + num_gallery_imgs
|
||
|
|
||
|
print("=> Market1501 loaded")
|
||
|
print("Dataset statistics:")
|
||
|
print(" ------------------------------")
|
||
|
print(" subset | # ids | # images")
|
||
|
print(" ------------------------------")
|
||
|
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
|
||
|
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
|
||
|
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
|
||
|
print(" ------------------------------")
|
||
|
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
|
||
|
print(" ------------------------------")
|
||
|
|
||
|
self.train = train
|
||
|
self.query = query
|
||
|
self.gallery = gallery
|
||
|
|
||
|
self.num_train_pids = num_train_pids
|
||
|
self.num_query_pids = num_query_pids
|
||
|
self.num_gallery_pids = num_gallery_pids
|
||
|
|
||
|
def _process_dir(self, dir_path, relabel=False):
|
||
|
print("Processing directory '{}'".format(dir_path))
|
||
|
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
||
|
pattern = re.compile(r'([-\d]+)_c(\d)')
|
||
|
|
||
|
pid_container = set()
|
||
|
for img_path in img_paths:
|
||
|
pid, _ = map(int, pattern.search(img_path).groups())
|
||
|
if pid == -1: continue # junk images are just ignored
|
||
|
pid_container.add(pid)
|
||
|
pid2label = {pid:label for label, pid in enumerate(pid_container)}
|
||
|
|
||
|
dataset = []
|
||
|
for img_path in img_paths:
|
||
|
pid, camid = map(int, pattern.search(img_path).groups())
|
||
|
if pid == -1: continue # junk images are just ignored
|
||
|
assert 0 <= pid <= 1501 # pid == 0 means background
|
||
|
assert 1 <= camid <= 6
|
||
|
camid -= 1 # index starts from 0
|
||
|
if relabel: pid = pid2label[pid]
|
||
|
dataset.append((img_path, pid, camid))
|
||
|
|
||
|
num_pids = len(pid_container)
|
||
|
num_imgs = len(dataset)
|
||
|
return dataset, num_pids, num_imgs
|
||
|
|
||
|
def _check_dir(self, dir_path):
|
||
|
if not osp.exists(dir_path):
|
||
|
print("Error: '{}' is not available.".format(dir_path))
|
||
|
sys.exit()
|
||
|
|
||
|
"""Create dataset"""
|
||
|
|
||
|
__factory = {
|
||
|
'market1501': Market1501,
|
||
|
}
|
||
|
|
||
|
def get_names():
|
||
|
return __factory.keys()
|
||
|
|
||
|
def init_dataset(name, *args, **kwargs):
|
||
|
if name not in __factory.keys():
|
||
|
raise KeyError("Unknown dataset: {}".format(name))
|
||
|
return __factory[name](*args, **kwargs)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
dataset = Market1501()
|