deep-person-reid/data_manager.py

104 lines
3.6 KiB
Python
Raw Normal View History

2018-03-12 05:17:48 +08:00
from __future__ import absolute_import
import os
import glob
import re
import sys
import os.path as osp
"""Dataset classes"""
class Market1501(object):
"""
Market1501
Reference:
Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015.
==========================
Dataset statistics:
# identities: 1501 (+1 for background)
# images: 12936 (train) + 3368 (query) + 15913 (gallery) =
"""
root = './data/market1501'
train_dir = osp.join(root, 'bounding_box_train')
query_dir = osp.join(root, 'query')
gallery_dir = osp.join(root, 'bounding_box_test')
def __init__(self):
self._check_dir(self.root)
self._check_dir(self.train_dir)
self._check_dir(self.query_dir)
self._check_dir(self.gallery_dir)
train, num_train_pids, num_train_imgs = self._process_dir(self.train_dir, relabel=True)
query, num_query_pids, num_query_imgs = self._process_dir(self.query_dir, relabel=False)
gallery, num_gallery_pids, num_gallery_imgs = self._process_dir(self.gallery_dir, relabel=False)
num_total_pids = num_train_pids + num_query_pids
num_total_imgs = num_train_imgs + num_query_imgs + num_gallery_imgs
print("=> Market1501 loaded")
print("Dataset statistics:")
print(" ------------------------------")
print(" subset | # ids | # images")
print(" ------------------------------")
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
print(" ------------------------------")
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
print(" ------------------------------")
self.train = train
self.query = query
self.gallery = gallery
self.num_train_pids = num_train_pids
self.num_query_pids = num_query_pids
self.num_gallery_pids = num_gallery_pids
def _process_dir(self, dir_path, relabel=False):
print("Processing directory '{}'".format(dir_path))
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
pattern = re.compile(r'([-\d]+)_c(\d)')
pid_container = set()
for img_path in img_paths:
pid, _ = map(int, pattern.search(img_path).groups())
if pid == -1: continue # junk images are just ignored
pid_container.add(pid)
pid2label = {pid:label for label, pid in enumerate(pid_container)}
dataset = []
for img_path in img_paths:
pid, camid = map(int, pattern.search(img_path).groups())
if pid == -1: continue # junk images are just ignored
assert 0 <= pid <= 1501 # pid == 0 means background
assert 1 <= camid <= 6
camid -= 1 # index starts from 0
if relabel: pid = pid2label[pid]
dataset.append((img_path, pid, camid))
num_pids = len(pid_container)
num_imgs = len(dataset)
return dataset, num_pids, num_imgs
def _check_dir(self, dir_path):
if not osp.exists(dir_path):
print("Error: '{}' is not available.".format(dir_path))
sys.exit()
"""Create dataset"""
__factory = {
'market1501': Market1501,
}
def get_names():
return __factory.keys()
def init_dataset(name, *args, **kwargs):
if name not in __factory.keys():
raise KeyError("Unknown dataset: {}".format(name))
return __factory[name](*args, **kwargs)
if __name__ == '__main__':
dataset = Market1501()