2019-03-24 17:22:43 +00:00
<!DOCTYPE html>
<!-- [if IE 8]><html class="no - js lt - ie9" lang="en" > <![endif] -->
<!-- [if gt IE 8]><! --> < html class = "no-js" lang = "en" > <!-- <![endif] -->
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width, initial-scale=1.0" >
2019-05-28 23:08:00 +01:00
< title > torchreid.optim.optimizer — torchreid 0.7.8 documentation< / title >
2019-03-24 17:22:43 +00:00
< script type = "text/javascript" src = "../../../_static/js/modernizr.min.js" > < / script >
< script type = "text/javascript" id = "documentation_options" data-url_root = "../../../" src = "../../../_static/documentation_options.js" > < / script >
< script type = "text/javascript" src = "../../../_static/jquery.js" > < / script >
< script type = "text/javascript" src = "../../../_static/underscore.js" > < / script >
< script type = "text/javascript" src = "../../../_static/doctools.js" > < / script >
< script type = "text/javascript" src = "../../../_static/language_data.js" > < / script >
< script async = "async" type = "text/javascript" src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML" > < / script >
< script type = "text/javascript" src = "../../../_static/js/theme.js" > < / script >
< link rel = "stylesheet" href = "../../../_static/css/theme.css" type = "text/css" / >
< link rel = "stylesheet" href = "../../../_static/pygments.css" type = "text/css" / >
< link rel = "index" title = "Index" href = "../../../genindex.html" / >
< link rel = "search" title = "Search" href = "../../../search.html" / >
< / head >
< body class = "wy-body-for-nav" >
< div class = "wy-grid-for-nav" >
< nav data-toggle = "wy-nav-shift" class = "wy-nav-side" >
< div class = "wy-side-scroll" >
< div class = "wy-side-nav-search" >
< a href = "../../../index.html" class = "icon icon-home" > torchreid
< / a >
< div class = "version" >
2019-05-28 23:08:00 +01:00
0.7.8
2019-03-24 17:22:43 +00:00
< / div >
< div role = "search" >
< form id = "rtd-search-form" class = "wy-form" action = "../../../search.html" method = "get" >
< input type = "text" name = "q" placeholder = "Search docs" / >
< input type = "hidden" name = "check_keywords" value = "yes" / >
< input type = "hidden" name = "area" value = "default" / >
< / form >
< / div >
< / div >
< div class = "wy-menu wy-menu-vertical" data-spy = "affix" role = "navigation" aria-label = "main navigation" >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../user_guide.html" > How-to< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../datasets.html" > Datasets< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../evaluation.html" > Evaluation< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Package Reference< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/data.html" > torchreid.data< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/engine.html" > torchreid.engine< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/losses.html" > torchreid.losses< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/metrics.html" > torchreid.metrics< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/models.html" > torchreid.models< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/optim.html" > torchreid.optim< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/utils.html" > torchreid.utils< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Resources< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../AWESOME_REID.html" > Awesome-ReID< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../MODEL_ZOO.html" > Model Zoo< / a > < / li >
< / ul >
< / div >
< / div >
< / nav >
< section data-toggle = "wy-nav-shift" class = "wy-nav-content-wrap" >
< nav class = "wy-nav-top" aria-label = "top navigation" >
< i data-toggle = "wy-nav-top" class = "fa fa-bars" > < / i >
< a href = "../../../index.html" > torchreid< / a >
< / nav >
< div class = "wy-nav-content" >
< div class = "rst-content" >
< div role = "navigation" aria-label = "breadcrumbs navigation" >
< ul class = "wy-breadcrumbs" >
< li > < a href = "../../../index.html" > Docs< / a > » < / li >
< li > < a href = "../../index.html" > Module code< / a > » < / li >
< li > torchreid.optim.optimizer< / li >
< li class = "wy-breadcrumbs-aside" >
< / li >
< / ul >
< hr / >
< / div >
< div role = "main" class = "document" itemscope = "itemscope" itemtype = "http://schema.org/Article" >
< div itemprop = "articleBody" >
< h1 > Source code for torchreid.optim.optimizer< / h1 > < div class = "highlight" > < pre >
< span > < / span > < span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > absolute_import< / span >
< span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > print_function< / span >
< span class = "kn" > import< / span > < span class = "nn" > warnings< / span >
< span class = "kn" > import< / span > < span class = "nn" > torch< / span >
< span class = "kn" > import< / span > < span class = "nn" > torch.nn< / span > < span class = "k" > as< / span > < span class = "nn" > nn< / span >
< span class = "n" > AVAI_OPTIMS< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "s1" > ' adam' < / span > < span class = "p" > ,< / span > < span class = "s1" > ' amsgrad' < / span > < span class = "p" > ,< / span > < span class = "s1" > ' sgd' < / span > < span class = "p" > ,< / span > < span class = "s1" > ' rmsprop' < / span > < span class = "p" > ]< / span >
< div class = "viewcode-block" id = "build_optimizer" > < a class = "viewcode-back" href = "../../../pkg/optim.html#torchreid.optim.optimizer.build_optimizer" > [docs]< / a > < span class = "k" > def< / span > < span class = "nf" > build_optimizer< / span > < span class = "p" > (< / span >
< span class = "n" > model< / span > < span class = "p" > ,< / span >
< span class = "n" > optim< / span > < span class = "o" > =< / span > < span class = "s1" > ' adam' < / span > < span class = "p" > ,< / span >
< span class = "n" > lr< / span > < span class = "o" > =< / span > < span class = "mf" > 0.0003< / span > < span class = "p" > ,< / span >
< span class = "n" > weight_decay< / span > < span class = "o" > =< / span > < span class = "mf" > 5e-04< / span > < span class = "p" > ,< / span >
< span class = "n" > momentum< / span > < span class = "o" > =< / span > < span class = "mf" > 0.9< / span > < span class = "p" > ,< / span >
< span class = "n" > sgd_dampening< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > ,< / span >
< span class = "n" > sgd_nesterov< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > rmsprop_alpha< / span > < span class = "o" > =< / span > < span class = "mf" > 0.99< / span > < span class = "p" > ,< / span >
< span class = "n" > adam_beta1< / span > < span class = "o" > =< / span > < span class = "mf" > 0.9< / span > < span class = "p" > ,< / span >
< span class = "n" > adam_beta2< / span > < span class = "o" > =< / span > < span class = "mf" > 0.99< / span > < span class = "p" > ,< / span >
< span class = "n" > staged_lr< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > new_layers< / span > < span class = "o" > =< / span > < span class = "s1" > ' ' < / span > < span class = "p" > ,< / span >
< span class = "n" > base_lr_mult< / span > < span class = "o" > =< / span > < span class = "mf" > 0.1< / span >
< span class = "p" > ):< / span >
< span class = "sd" > " " " A function wrapper for building an optimizer.< / span >
< span class = "sd" > Args:< / span >
< span class = "sd" > model (nn.Module): model.< / span >
< span class = "sd" > optim (str, optional): optimizer. Default is " adam" .< / span >
< span class = "sd" > lr (float, optional): learning rate. Default is 0.0003.< / span >
< span class = "sd" > weight_decay (float, optional): weight decay (L2 penalty). Default is 5e-04.< / span >
< span class = "sd" > momentum (float, optional): momentum factor in sgd. Default is 0.9,< / span >
< span class = "sd" > sgd_dampening (float, optional): dampening for momentum. Default is 0.< / span >
< span class = "sd" > sgd_nesterov (bool, optional): enables Nesterov momentum. Default is False.< / span >
< span class = "sd" > rmsprop_alpha (float, optional): smoothing constant for rmsprop. Default is 0.99.< / span >
< span class = "sd" > adam_beta1 (float, optional): beta-1 value in adam. Default is 0.9.< / span >
< span class = "sd" > adam_beta2 (float, optional): beta-2 value in adam. Default is 0.99,< / span >
< span class = "sd" > staged_lr (bool, optional): uses different learning rates for base and new layers. Base< / span >
< span class = "sd" > layers are pretrained layers while new layers are randomly initialized, e.g. the< / span >
< span class = "sd" > identity classification layer. Enabling ``staged_lr`` can allow the base layers to< / span >
< span class = "sd" > be trained with a smaller learning rate determined by ``base_lr_mult``, while the new< / span >
< span class = "sd" > layers will take the ``lr``. Default is False.< / span >
< span class = "sd" > new_layers (str or list): attribute names in ``model``. Default is empty.< / span >
< span class = "sd" > base_lr_mult (float, optional): learning rate multiplier for base layers. Default is 0.1.< / span >
< span class = "sd" > Examples::< / span >
< span class = "sd" > > > > # A normal optimizer can be built by< / span >
< span class = "sd" > > > > optimizer = torchreid.optim.build_optimizer(model, optim=' sgd' , lr=0.01)< / span >
< span class = "sd" > > > > # If you want to use a smaller learning rate for pretrained layers< / span >
< span class = "sd" > > > > # and the attribute name for the randomly initialized layer is ' classifier' ,< / span >
< span class = "sd" > > > > # you can do< / span >
< span class = "sd" > > > > optimizer = torchreid.optim.build_optimizer(< / span >
< span class = "sd" > > > > model, optim=' sgd' , lr=0.01, staged_lr=True,< / span >
< span class = "sd" > > > > new_layers=' classifier' , base_lr_mult=0.1< / span >
< span class = "sd" > > > > )< / span >
< span class = "sd" > > > > # Now the `classifier` has learning rate 0.01 but the base layers< / span >
< span class = "sd" > > > > # have learning rate 0.01 * 0.1.< / span >
< span class = "sd" > > > > # new_layers can also take multiple attribute names. Say the new layers< / span >
< span class = "sd" > > > > # are ' fc' and ' classifier' , you can do< / span >
< span class = "sd" > > > > optimizer = torchreid.optim.build_optimizer(< / span >
< span class = "sd" > > > > model, optim=' sgd' , lr=0.01, staged_lr=True,< / span >
< span class = "sd" > > > > new_layers=[' fc' , ' classifier' ], base_lr_mult=0.1< / span >
< span class = "sd" > > > > )< / span >
< span class = "sd" > " " " < / span >
< span class = "k" > if< / span > < span class = "n" > optim< / span > < span class = "ow" > not< / span > < span class = "ow" > in< / span > < span class = "n" > AVAI_OPTIMS< / span > < span class = "p" > :< / span >
< span class = "k" > raise< / span > < span class = "ne" > ValueError< / span > < span class = "p" > (< / span > < span class = "s1" > ' Unsupported optim: < / span > < span class = "si" > {}< / span > < span class = "s1" > . Must be one of < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "n" > optim< / span > < span class = "p" > ,< / span > < span class = "n" > AVAI_OPTIMS< / span > < span class = "p" > ))< / span >
< span class = "k" > if< / span > < span class = "ow" > not< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "k" > raise< / span > < span class = "ne" > TypeError< / span > < span class = "p" > (< / span > < span class = "s1" > ' model given to build_optimizer must be an instance of nn.Module' < / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > staged_lr< / span > < span class = "p" > :< / span >
< span class = "k" > if< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "n" > new_layers< / span > < span class = "p" > ,< / span > < span class = "nb" > str< / span > < span class = "p" > ):< / span >
< span class = "k" > if< / span > < span class = "n" > new_layers< / span > < span class = "ow" > is< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > warnings< / span > < span class = "o" > .< / span > < span class = "n" > warn< / span > < span class = "p" > (< / span > < span class = "s1" > ' new_layers is empty, therefore, staged_lr is useless' < / span > < span class = "p" > )< / span >
< span class = "n" > new_layers< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "n" > new_layers< / span > < span class = "p" > ]< / span >
< span class = "k" > if< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > DataParallel< / span > < span class = "p" > ):< / span >
< span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > model< / span > < span class = "o" > .< / span > < span class = "n" > module< / span >
< span class = "n" > base_params< / span > < span class = "o" > =< / span > < span class = "p" > []< / span >
< span class = "n" > base_layers< / span > < span class = "o" > =< / span > < span class = "p" > []< / span >
< span class = "n" > new_params< / span > < span class = "o" > =< / span > < span class = "p" > []< / span >
< span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "p" > ,< / span > < span class = "n" > module< / span > < span class = "ow" > in< / span > < span class = "n" > model< / span > < span class = "o" > .< / span > < span class = "n" > named_children< / span > < span class = "p" > ():< / span >
< span class = "k" > if< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "n" > new_layers< / span > < span class = "p" > :< / span >
< span class = "n" > new_params< / span > < span class = "o" > +=< / span > < span class = "p" > [< / span > < span class = "n" > p< / span > < span class = "k" > for< / span > < span class = "n" > p< / span > < span class = "ow" > in< / span > < span class = "n" > module< / span > < span class = "o" > .< / span > < span class = "n" > parameters< / span > < span class = "p" > ()]< / span >
< span class = "k" > else< / span > < span class = "p" > :< / span >
< span class = "n" > base_params< / span > < span class = "o" > +=< / span > < span class = "p" > [< / span > < span class = "n" > p< / span > < span class = "k" > for< / span > < span class = "n" > p< / span > < span class = "ow" > in< / span > < span class = "n" > module< / span > < span class = "o" > .< / span > < span class = "n" > parameters< / span > < span class = "p" > ()]< / span >
< span class = "n" > base_layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > name< / span > < span class = "p" > )< / span >
< span class = "n" > param_groups< / span > < span class = "o" > =< / span > < span class = "p" > [< / span >
< span class = "p" > {< / span > < span class = "s1" > ' params' < / span > < span class = "p" > :< / span > < span class = "n" > base_params< / span > < span class = "p" > ,< / span > < span class = "s1" > ' lr' < / span > < span class = "p" > :< / span > < span class = "n" > lr< / span > < span class = "o" > *< / span > < span class = "n" > base_lr_mult< / span > < span class = "p" > },< / span >
< span class = "p" > {< / span > < span class = "s1" > ' params' < / span > < span class = "p" > :< / span > < span class = "n" > new_params< / span > < span class = "p" > },< / span >
< span class = "p" > ]< / span >
< span class = "k" > else< / span > < span class = "p" > :< / span >
< span class = "n" > param_groups< / span > < span class = "o" > =< / span > < span class = "n" > model< / span > < span class = "o" > .< / span > < span class = "n" > parameters< / span > < span class = "p" > ()< / span >
< span class = "k" > if< / span > < span class = "n" > optim< / span > < span class = "o" > ==< / span > < span class = "s1" > ' adam' < / span > < span class = "p" > :< / span >
< span class = "n" > optimizer< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > optim< / span > < span class = "o" > .< / span > < span class = "n" > Adam< / span > < span class = "p" > (< / span >
< span class = "n" > param_groups< / span > < span class = "p" > ,< / span >
< span class = "n" > lr< / span > < span class = "o" > =< / span > < span class = "n" > lr< / span > < span class = "p" > ,< / span >
< span class = "n" > weight_decay< / span > < span class = "o" > =< / span > < span class = "n" > weight_decay< / span > < span class = "p" > ,< / span >
< span class = "n" > betas< / span > < span class = "o" > =< / span > < span class = "p" > (< / span > < span class = "n" > adam_beta1< / span > < span class = "p" > ,< / span > < span class = "n" > adam_beta2< / span > < span class = "p" > ),< / span >
< span class = "p" > )< / span >
< span class = "k" > elif< / span > < span class = "n" > optim< / span > < span class = "o" > ==< / span > < span class = "s1" > ' amsgrad' < / span > < span class = "p" > :< / span >
< span class = "n" > optimizer< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > optim< / span > < span class = "o" > .< / span > < span class = "n" > Adam< / span > < span class = "p" > (< / span >
< span class = "n" > param_groups< / span > < span class = "p" > ,< / span >
< span class = "n" > lr< / span > < span class = "o" > =< / span > < span class = "n" > lr< / span > < span class = "p" > ,< / span >
< span class = "n" > weight_decay< / span > < span class = "o" > =< / span > < span class = "n" > weight_decay< / span > < span class = "p" > ,< / span >
< span class = "n" > betas< / span > < span class = "o" > =< / span > < span class = "p" > (< / span > < span class = "n" > adam_beta1< / span > < span class = "p" > ,< / span > < span class = "n" > adam_beta2< / span > < span class = "p" > ),< / span >
< span class = "n" > amsgrad< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span >
< span class = "p" > )< / span >
< span class = "k" > elif< / span > < span class = "n" > optim< / span > < span class = "o" > ==< / span > < span class = "s1" > ' sgd' < / span > < span class = "p" > :< / span >
< span class = "n" > optimizer< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > optim< / span > < span class = "o" > .< / span > < span class = "n" > SGD< / span > < span class = "p" > (< / span >
< span class = "n" > param_groups< / span > < span class = "p" > ,< / span >
< span class = "n" > lr< / span > < span class = "o" > =< / span > < span class = "n" > lr< / span > < span class = "p" > ,< / span >
< span class = "n" > momentum< / span > < span class = "o" > =< / span > < span class = "n" > momentum< / span > < span class = "p" > ,< / span >
< span class = "n" > weight_decay< / span > < span class = "o" > =< / span > < span class = "n" > weight_decay< / span > < span class = "p" > ,< / span >
< span class = "n" > dampening< / span > < span class = "o" > =< / span > < span class = "n" > sgd_dampening< / span > < span class = "p" > ,< / span >
< span class = "n" > nesterov< / span > < span class = "o" > =< / span > < span class = "n" > sgd_nesterov< / span > < span class = "p" > ,< / span >
< span class = "p" > )< / span >
< span class = "k" > elif< / span > < span class = "n" > optim< / span > < span class = "o" > ==< / span > < span class = "s1" > ' rmsprop' < / span > < span class = "p" > :< / span >
< span class = "n" > optimizer< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > optim< / span > < span class = "o" > .< / span > < span class = "n" > RMSprop< / span > < span class = "p" > (< / span >
< span class = "n" > param_groups< / span > < span class = "p" > ,< / span >
< span class = "n" > lr< / span > < span class = "o" > =< / span > < span class = "n" > lr< / span > < span class = "p" > ,< / span >
< span class = "n" > momentum< / span > < span class = "o" > =< / span > < span class = "n" > momentum< / span > < span class = "p" > ,< / span >
< span class = "n" > weight_decay< / span > < span class = "o" > =< / span > < span class = "n" > weight_decay< / span > < span class = "p" > ,< / span >
< span class = "n" > alpha< / span > < span class = "o" > =< / span > < span class = "n" > rmsprop_alpha< / span > < span class = "p" > ,< / span >
< span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > optimizer< / span > < / div >
< / pre > < / div >
< / div >
< / div >
< footer >
< hr / >
< div role = "contentinfo" >
< p >
© Copyright 2019, Kaiyang Zhou
< / p >
< / div >
Built with < a href = "http://sphinx-doc.org/" > Sphinx< / a > using a < a href = "https://github.com/rtfd/sphinx_rtd_theme" > theme< / a > provided by < a href = "https://readthedocs.org" > Read the Docs< / a > .
< / footer >
< / div >
< / div >
< / section >
< / div >
< script type = "text/javascript" >
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
< / script >
< / body >
< / html >