deep-person-reid/README.md

158 lines
7.8 KiB
Markdown
Raw Normal View History

2018-03-12 18:29:35 +08:00
# deep-person-reid
2018-07-06 18:02:32 +08:00
[PyTorch](http://pytorch.org/) implementation of deep person re-identification models.
2018-03-12 18:29:35 +08:00
2018-04-23 05:12:55 +08:00
We support
- multi-GPU training.
- both image-based and video-based reid.
2018-11-09 21:54:29 +08:00
- standard dataset splits used by most papers.
2018-04-23 05:56:32 +08:00
- unified interface for different reid models.
2018-06-04 17:26:54 +08:00
- easy dataset preparation.
2018-04-24 00:12:24 +08:00
- end-to-end training and evaluation.
2018-06-04 17:26:54 +08:00
- fast cython-based evaluation.
2018-11-09 21:54:29 +08:00
- multi-dataset training.
- visualization of ranked results.
- state-of-the-art reid models.
2018-03-22 21:56:04 +08:00
2018-11-09 21:54:29 +08:00
## Updates
- xx-11-2018: xxx.
2018-03-22 21:56:04 +08:00
2018-08-01 19:09:24 +08:00
## Get started
2018-03-12 22:21:14 +08:00
1. `cd` to the folder where you want to download this repo.
2018-06-04 17:26:54 +08:00
2. Run `git clone https://github.com/KaiyangZhou/deep-person-reid`.
2018-11-09 21:54:29 +08:00
3. Install dependencies by `pip install -r requirements.txt` (if necessary).
2018-07-02 20:36:43 +08:00
4. To accelerate evaluation (10x faster), you can use cython-based evaluation code (developed by [luzai](https://github.com/luzai)). First `cd` to `eval_lib`, then do `make` or `python setup.py build_ext -i`. After that, run `python test_cython_eval.py` to test if the package is successfully installed.
2018-06-04 17:26:54 +08:00
2018-07-06 18:02:32 +08:00
## Datasets
Image reid datasets:
- [Market1501](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf)
- [CUHK03](https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf)
- [DukeMTMC-reID](https://arxiv.org/abs/1701.07717)
- [MSMT17](https://arxiv.org/abs/1711.08565)
- [VIPeR](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.7285&rep=rep1&type=pdf)
- [GRID](http://www.eecs.qmul.ac.uk/~txiang/publications/LoyXiangGong_cvpr_2009.pdf)
- [CUHK01](http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf)
- [PRID450S](https://pdfs.semanticscholar.org/f62d/71e701c9fd021610e2076b5e0f5b2c7c86ca.pdf)
- [SenseReID](http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf)
2018-07-06 18:02:32 +08:00
Video reid datasets:
- [MARS](http://www.liangzheng.org/1320.pdf)
- [iLIDS-VID](https://www.eecs.qmul.ac.uk/~sgg/papers/WangEtAl_ECCV14.pdf)
- [PRID2011](https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf)
- [DukeMTMC-VideoReID](http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf)
2018-07-06 18:02:32 +08:00
2018-11-09 21:54:29 +08:00
Instructions regarding how to prepare (and do evaluation on) these datasets can be found in [DATASETS.md](DATASETS.md).
2018-06-04 17:26:54 +08:00
2018-03-12 22:33:52 +08:00
## Models
2018-11-09 21:54:29 +08:00
### ImageNet classification models
- [ResNet](https://arxiv.org/abs/1512.03385)
- [ResNeXt](https://arxiv.org/abs/1611.05431)
- [SENet](https://arxiv.org/abs/1709.01507)
- [DenseNet](https://arxiv.org/abs/1608.06993)
- [Inception-ResNet-V2](https://arxiv.org/abs/1602.07261)
- [Inception-V4](https://arxiv.org/abs/1602.07261)
- [Xception](https://arxiv.org/abs/1610.02357)
### Lightweight models
- [NASNet](https://arxiv.org/abs/1707.07012)
- [MobileNetV2](https://arxiv.org/abs/1801.04381)
- [ShuffleNet](https://arxiv.org/abs/1707.01083)
- [SqueezeNet](https://arxiv.org/abs/1602.07360)
### ReID-specific models
- [MuDeep](https://arxiv.org/abs/1709.05165)
2018-11-10 00:17:04 +08:00
- [ResNet-mid](https://arxiv.org/abs/1711.08106)
2018-11-09 21:54:29 +08:00
- [HACNN](https://arxiv.org/abs/1802.08122)
- [PCB](https://arxiv.org/abs/1711.09349)
- [MLFN](https://arxiv.org/abs/1803.09132)
In the [MODEL_ZOO](MODEL_ZOO.md), we provide pretrained models and the training scripts to reproduce the results.
## Losses
- `xent`: cross entropy loss (with label smoothing regularizer).
- `htri`: [hard mining triplet loss](https://arxiv.org/abs/1703.07737).
## Tutorial
### Train
Training methods are implemented in
- `train_imgreid_xent.py`: train image-reid models with cross entropy loss.
- `train_imgreid_xent_htri.py`: train image-reid models with hard mining triplet loss or the combination of hard mining triplet loss and cross entropy loss.
- `train_imgreid_xent.py`: train video-reid models with cross entropy loss.
- `train_imgreid_xent_htri.py`: train video-reid models with hard mining triplet loss or the combination of hard mining triplet loss and cross entropy loss.
Input arguments for the above training scripts are unified in [args.py](args.py).
To train an image-reid model with cross entropy loss, you can do
2018-03-13 06:31:39 +08:00
```bash
2018-11-09 21:54:29 +08:00
python train_imgreid_xent.py \
-s market1501 \ # source dataset for training
-t market1501 \ # target dataset for test
--height 256 \ # image height
--width 128 \ # image width
--optim amsgrad \ # optimizer
--label-smooth \ # label smoothing regularizer
--lr 0.0003 \ # learning rate
--max-epoch 60 \ # maximum epoch to run
--stepsize 20 40 \ # stepsize for learning rate decay
--train-batch-size 32 \
--test-batch-size 100 \
-a resnet50 \ # network architecture
--save-dir log/resnet50-market-xent \ # where to save the log and models
--gpu-devices 0 \ # gpu device index
2018-03-12 22:33:52 +08:00
```
2018-11-09 21:54:29 +08:00
#### Multi-dataset training
`-s` and `-t` can take different strings of arbitrary length (delimited by space). For example, if you wanna train models on Market1501 + DukeMTMC-reID and test on both of them, you can use `-s market1501 dukemtmcreid` and `-t market1501 dukemtmcreid`. If say, you wanna test on a different dataset, e.g. MSMT17, then just do `-t msmt17`. Multi-dataset training is implemented for both image-reid and video-reid. Note that when `-t` takes multiple datasets, evaluation is performed on each dataset individually.
2018-03-16 23:08:51 +08:00
2018-11-09 21:54:29 +08:00
#### Two-stepped transfer learning
2018-11-10 01:03:28 +08:00
To finetune models pretrained on external large-scale datasets such as [ImageNet](http://www.image-net.org/), the [two-stepped training strategy](https://arxiv.org/abs/1611.05244) is useful.
2018-07-26 00:59:41 +08:00
2018-11-10 01:03:28 +08:00
First, the base network is frozen and only the randomly initialized layers (e.g. identity classification layer) are trained for `--fixbase-epoch` epochs. Specifically, the layers specified by `--open-layers` are set to the **train** mode and will be updated, while other layers are set to the **eval** mode and are frozen. See `open_specified_layers(model, open_layers)` in [torchreid/utils/torchtools.py](torchreid/utils/torchtools.py).
Second, after the new layers are adapted to the old layers, all layers are set to the **train** mode and are trained for `--max-epoch` epochs. See `open_all_layers(model)` in [torchreid/utils/torchtools.py](torchreid/utils/torchtools.py)
For example, to train the [resnet50](torchreid/models/resnet.py) with a `classifier` being initialized randomly, you can set `--fixbase-epoch 5` and `--open-layers classifier`. The layer names must align with the attribute names in the model, i.e. `self.classifier` exists in the model.
2018-03-12 19:04:39 +08:00
2018-11-09 21:54:29 +08:00
#### Using hard mining triplet loss
`htri` requires adding `--train-sampler RandomIdentitySampler`.
2018-04-02 01:08:50 +08:00
2018-11-09 21:54:29 +08:00
#### Training video-reid models
For video reid, `test-batch-size` refers to the number of tracklets, so the real image batch size is `--test-batch-size * --seq-len`.
### Test
2018-03-12 23:04:04 +08:00
2018-11-09 21:54:29 +08:00
#### Evaluation mode
Use `--evaluate` to switch to the evaluation mode. In doing so, no model training is performed. For example, you wanna load model weights at `path_to/resnet50.pth.tar` for `resnet50` and do evaluation on Market1501, you can do
2018-03-13 06:31:39 +08:00
```bash
2018-11-09 21:54:29 +08:00
python train_imgreid_xent.py \
-s market1501 \ # this does not matter any more
-t market1501 \ # you can add more datasets in the test list
--height 256 \
--width 128 \
--test-batch-size 100 \
--evaluate \
-a resnet50 \
--load-weights path_to/resnet50.pth.tar \
--save-dir log/resnet50-eval
--gpu-devices 0 \
2018-03-13 06:23:50 +08:00
```
2018-08-01 19:07:45 +08:00
2018-11-09 21:54:29 +08:00
Note that `--load-weights` will discard layer weights that do not match the model layers in size.
2018-08-01 19:07:45 +08:00
2018-11-09 21:54:29 +08:00
#### Visualize ranked results
2018-11-10 01:03:28 +08:00
Ranked results can be visualized via `--visualize-ranks`, which works along with `--evaluate`. Ranked images will be saved in `save_dir/ranked_results` where `save_dir` is the directory you specify with `--save-dir`. This function is implemented in [torchreid/utils/reidtools.py](torchreid/utils/reidtools.py).
2018-08-01 19:04:36 +08:00
<div align="center">
2018-08-01 19:07:45 +08:00
<img src="imgs/ranked_results.jpg" alt="train" width="70%">
2018-08-01 19:04:36 +08:00
</div>
2018-08-01 19:07:45 +08:00
2018-10-09 17:18:36 +08:00
## Misc
2018-11-09 21:54:29 +08:00
- [Related person ReID projects](RELATED_PROJECTS.md).
2018-10-09 17:18:36 +08:00
2018-08-01 19:07:45 +08:00
2018-07-06 18:02:32 +08:00
## Citation
Please link this project in your paper.
2018-03-27 19:12:13 +08:00
2018-11-09 21:54:29 +08:00
## License
This project is under the [MIT License](LICENSE).