deep-person-reid/_modules/torchreid/models/senet.html

806 lines
95 KiB
HTML
Raw Normal View History

2019-03-25 01:22:43 +08:00
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
2019-04-28 06:32:21 +08:00
<title>torchreid.models.senet &mdash; torchreid 0.7.4 documentation</title>
2019-03-25 01:22:43 +08:00
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> torchreid
</a>
<div class="version">
2019-04-28 06:32:21 +08:00
0.7.4
2019-03-25 01:22:43 +08:00
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/models.html">torchreid.models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html">Docs</a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>torchreid.models.senet</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for torchreid.models.senet</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">absolute_import</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">division</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
<span class="s1">&#39;senet154&#39;</span><span class="p">,</span>
<span class="s1">&#39;se_resnet50&#39;</span><span class="p">,</span>
<span class="s1">&#39;se_resnet101&#39;</span><span class="p">,</span>
<span class="s1">&#39;se_resnet152&#39;</span><span class="p">,</span>
<span class="s1">&#39;se_resnext50_32x4d&#39;</span><span class="p">,</span>
<span class="s1">&#39;se_resnext101_32x4d&#39;</span><span class="p">,</span>
<span class="s1">&#39;se_resnet50_fc512&#39;</span>
<span class="p">]</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="k">import</span> <span class="n">OrderedDict</span>
<span class="kn">import</span> <span class="nn">math</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">from</span> <span class="nn">torch.utils</span> <span class="k">import</span> <span class="n">model_zoo</span>
<span class="kn">from</span> <span class="nn">torch.nn</span> <span class="k">import</span> <span class="n">functional</span> <span class="k">as</span> <span class="n">F</span>
<span class="kn">import</span> <span class="nn">torchvision</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Code imported from https://github.com/Cadene/pretrained-models.pytorch</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">pretrained_settings</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;senet154&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;imagenet&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;url&#39;</span><span class="p">:</span> <span class="s1">&#39;http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_space&#39;</span><span class="p">:</span> <span class="s1">&#39;RGB&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_size&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">],</span>
<span class="s1">&#39;input_range&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s1">&#39;mean&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.485</span><span class="p">,</span> <span class="mf">0.456</span><span class="p">,</span> <span class="mf">0.406</span><span class="p">],</span>
<span class="s1">&#39;std&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.229</span><span class="p">,</span> <span class="mf">0.224</span><span class="p">,</span> <span class="mf">0.225</span><span class="p">],</span>
<span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">1000</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="s1">&#39;se_resnet50&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;imagenet&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;url&#39;</span><span class="p">:</span> <span class="s1">&#39;http://data.lip6.fr/cadene/pretrainedmodels/se_resnet50-ce0d4300.pth&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_space&#39;</span><span class="p">:</span> <span class="s1">&#39;RGB&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_size&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">],</span>
<span class="s1">&#39;input_range&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s1">&#39;mean&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.485</span><span class="p">,</span> <span class="mf">0.456</span><span class="p">,</span> <span class="mf">0.406</span><span class="p">],</span>
<span class="s1">&#39;std&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.229</span><span class="p">,</span> <span class="mf">0.224</span><span class="p">,</span> <span class="mf">0.225</span><span class="p">],</span>
<span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">1000</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="s1">&#39;se_resnet101&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;imagenet&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;url&#39;</span><span class="p">:</span> <span class="s1">&#39;http://data.lip6.fr/cadene/pretrainedmodels/se_resnet101-7e38fcc6.pth&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_space&#39;</span><span class="p">:</span> <span class="s1">&#39;RGB&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_size&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">],</span>
<span class="s1">&#39;input_range&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s1">&#39;mean&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.485</span><span class="p">,</span> <span class="mf">0.456</span><span class="p">,</span> <span class="mf">0.406</span><span class="p">],</span>
<span class="s1">&#39;std&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.229</span><span class="p">,</span> <span class="mf">0.224</span><span class="p">,</span> <span class="mf">0.225</span><span class="p">],</span>
<span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">1000</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="s1">&#39;se_resnet152&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;imagenet&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;url&#39;</span><span class="p">:</span> <span class="s1">&#39;http://data.lip6.fr/cadene/pretrainedmodels/se_resnet152-d17c99b7.pth&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_space&#39;</span><span class="p">:</span> <span class="s1">&#39;RGB&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_size&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">],</span>
<span class="s1">&#39;input_range&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s1">&#39;mean&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.485</span><span class="p">,</span> <span class="mf">0.456</span><span class="p">,</span> <span class="mf">0.406</span><span class="p">],</span>
<span class="s1">&#39;std&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.229</span><span class="p">,</span> <span class="mf">0.224</span><span class="p">,</span> <span class="mf">0.225</span><span class="p">],</span>
<span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">1000</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="s1">&#39;se_resnext50_32x4d&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;imagenet&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;url&#39;</span><span class="p">:</span> <span class="s1">&#39;http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_space&#39;</span><span class="p">:</span> <span class="s1">&#39;RGB&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_size&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">],</span>
<span class="s1">&#39;input_range&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s1">&#39;mean&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.485</span><span class="p">,</span> <span class="mf">0.456</span><span class="p">,</span> <span class="mf">0.406</span><span class="p">],</span>
<span class="s1">&#39;std&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.229</span><span class="p">,</span> <span class="mf">0.224</span><span class="p">,</span> <span class="mf">0.225</span><span class="p">],</span>
<span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">1000</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="s1">&#39;se_resnext101_32x4d&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;imagenet&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;url&#39;</span><span class="p">:</span> <span class="s1">&#39;http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_space&#39;</span><span class="p">:</span> <span class="s1">&#39;RGB&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_size&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">],</span>
<span class="s1">&#39;input_range&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s1">&#39;mean&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.485</span><span class="p">,</span> <span class="mf">0.456</span><span class="p">,</span> <span class="mf">0.406</span><span class="p">],</span>
<span class="s1">&#39;std&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.229</span><span class="p">,</span> <span class="mf">0.224</span><span class="p">,</span> <span class="mf">0.225</span><span class="p">],</span>
<span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">1000</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="p">}</span>
<span class="k">class</span> <span class="nc">SEModule</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">channels</span><span class="p">,</span> <span class="n">reduction</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SEModule</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">avg_pool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">channels</span><span class="p">,</span> <span class="n">channels</span> <span class="o">//</span> <span class="n">reduction</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">channels</span> <span class="o">//</span> <span class="n">reduction</span><span class="p">,</span> <span class="n">channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sigmoid</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sigmoid</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">module_input</span> <span class="o">=</span> <span class="n">x</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">avg_pool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">module_input</span> <span class="o">*</span> <span class="n">x</span>
<span class="k">class</span> <span class="nc">Bottleneck</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Base class for bottlenecks that implements `forward()` method.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">x</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn1</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn2</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv3</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn3</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">downsample</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">residual</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">downsample</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">se_module</span><span class="p">(</span><span class="n">out</span><span class="p">)</span> <span class="o">+</span> <span class="n">residual</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="k">class</span> <span class="nc">SEBottleneck</span><span class="p">(</span><span class="n">Bottleneck</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Bottleneck for SENet154.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">expansion</span> <span class="o">=</span> <span class="mi">4</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span> <span class="n">reduction</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SEBottleneck</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span> <span class="o">*</span> <span class="mi">2</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">2</span><span class="p">,</span> <span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">se_module</span> <span class="o">=</span> <span class="n">SEModule</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">downsample</span> <span class="o">=</span> <span class="n">downsample</span>
<span class="bp">self</span><span class="o">.</span><span class="n">stride</span> <span class="o">=</span> <span class="n">stride</span>
<span class="k">class</span> <span class="nc">SEResNetBottleneck</span><span class="p">(</span><span class="n">Bottleneck</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe</span>
<span class="sd"> implementation and uses `stride=stride` in `conv1` and not in `conv2`</span>
<span class="sd"> (the latter is used in the torchvision implementation of ResNet).</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">expansion</span> <span class="o">=</span> <span class="mi">4</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span> <span class="n">reduction</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SEResNetBottleneck</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">planes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">planes</span><span class="p">,</span> <span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">se_module</span> <span class="o">=</span> <span class="n">SEModule</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">downsample</span> <span class="o">=</span> <span class="n">downsample</span>
<span class="bp">self</span><span class="o">.</span><span class="n">stride</span> <span class="o">=</span> <span class="n">stride</span>
<span class="k">class</span> <span class="nc">SEResNeXtBottleneck</span><span class="p">(</span><span class="n">Bottleneck</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;ResNeXt bottleneck type C with a Squeeze-and-Excitation module&quot;&quot;&quot;</span>
<span class="n">expansion</span> <span class="o">=</span> <span class="mi">4</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span> <span class="n">reduction</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">base_width</span><span class="o">=</span><span class="mi">4</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SEResNeXtBottleneck</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="n">width</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">floor</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="p">(</span><span class="n">base_width</span> <span class="o">/</span> <span class="mf">64.</span><span class="p">))</span> <span class="o">*</span> <span class="n">groups</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">width</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">width</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">width</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
<span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">width</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">se_module</span> <span class="o">=</span> <span class="n">SEModule</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">downsample</span> <span class="o">=</span> <span class="n">downsample</span>
<span class="bp">self</span><span class="o">.</span><span class="n">stride</span> <span class="o">=</span> <span class="n">stride</span>
<div class="viewcode-block" id="SENet"><a class="viewcode-back" href="../../../pkg/models.html#torchreid.models.senet.SENet">[docs]</a><span class="k">class</span> <span class="nc">SENet</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Squeeze-and-excitation network.</span>
<span class="sd"> </span>
<span class="sd"> Reference:</span>
<span class="sd"> Hu et al. Squeeze-and-Excitation Networks. CVPR 2018.</span>
<span class="sd"> Public keys:</span>
<span class="sd"> - ``senet154``: SENet154.</span>
<span class="sd"> - ``se_resnet50``: ResNet50 + SE.</span>
<span class="sd"> - ``se_resnet101``: ResNet101 + SE.</span>
<span class="sd"> - ``se_resnet152``: ResNet152 + SE.</span>
<span class="sd"> - ``se_resnext50_32x4d``: ResNeXt50 (groups=32, width=4) + SE.</span>
<span class="sd"> - ``se_resnext101_32x4d``: ResNeXt101 (groups=32, width=4) + SE.</span>
<span class="sd"> - ``se_resnet50_fc512``: (ResNet50 + SE) + FC.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">layers</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span> <span class="n">reduction</span><span class="p">,</span> <span class="n">dropout_p</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span>
<span class="n">inplanes</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">input_3x3</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">downsample_padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">last_stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">fc_dims</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> block (nn.Module): Bottleneck class.</span>
<span class="sd"> - For SENet154: SEBottleneck</span>
<span class="sd"> - For SE-ResNet models: SEResNetBottleneck</span>
<span class="sd"> - For SE-ResNeXt models: SEResNeXtBottleneck</span>
<span class="sd"> layers (list of ints): Number of residual blocks for 4 layers of the</span>
<span class="sd"> network (layer1...layer4).</span>
<span class="sd"> groups (int): Number of groups for the 3x3 convolution in each</span>
<span class="sd"> bottleneck block.</span>
<span class="sd"> - For SENet154: 64</span>
<span class="sd"> - For SE-ResNet models: 1</span>
<span class="sd"> - For SE-ResNeXt models: 32</span>
<span class="sd"> reduction (int): Reduction ratio for Squeeze-and-Excitation modules.</span>
<span class="sd"> - For all models: 16</span>
<span class="sd"> dropout_p (float or None): Drop probability for the Dropout layer.</span>
<span class="sd"> If `None` the Dropout layer is not used.</span>
<span class="sd"> - For SENet154: 0.2</span>
<span class="sd"> - For SE-ResNet models: None</span>
<span class="sd"> - For SE-ResNeXt models: None</span>
<span class="sd"> inplanes (int): Number of input channels for layer1.</span>
<span class="sd"> - For SENet154: 128</span>
<span class="sd"> - For SE-ResNet models: 64</span>
<span class="sd"> - For SE-ResNeXt models: 64</span>
<span class="sd"> input_3x3 (bool): If `True`, use three 3x3 convolutions instead of</span>
<span class="sd"> a single 7x7 convolution in layer0.</span>
<span class="sd"> - For SENet154: True</span>
<span class="sd"> - For SE-ResNet models: False</span>
<span class="sd"> - For SE-ResNeXt models: False</span>
<span class="sd"> downsample_kernel_size (int): Kernel size for downsampling convolutions</span>
<span class="sd"> in layer2, layer3 and layer4.</span>
<span class="sd"> - For SENet154: 3</span>
<span class="sd"> - For SE-ResNet models: 1</span>
<span class="sd"> - For SE-ResNeXt models: 1</span>
<span class="sd"> downsample_padding (int): Padding for downsampling convolutions in</span>
<span class="sd"> layer2, layer3 and layer4.</span>
<span class="sd"> - For SENet154: 1</span>
<span class="sd"> - For SE-ResNet models: 0</span>
<span class="sd"> - For SE-ResNeXt models: 0</span>
<span class="sd"> num_classes (int): Number of outputs in `classifier` layer.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SENet</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span> <span class="o">=</span> <span class="n">inplanes</span>
<span class="bp">self</span><span class="o">.</span><span class="n">loss</span> <span class="o">=</span> <span class="n">loss</span>
<span class="k">if</span> <span class="n">input_3x3</span><span class="p">:</span>
<span class="n">layer0_modules</span> <span class="o">=</span> <span class="p">[</span>
<span class="p">(</span><span class="s1">&#39;conv1&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;bn1&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">64</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;relu1&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;conv2&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;bn2&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">64</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;relu2&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;conv3&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="n">inplanes</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;bn3&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">inplanes</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;relu3&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)),</span>
<span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">layer0_modules</span> <span class="o">=</span> <span class="p">[</span>
<span class="p">(</span><span class="s1">&#39;conv1&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">inplanes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">7</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">padding</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;bn1&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">inplanes</span><span class="p">)),</span>
<span class="p">(</span><span class="s1">&#39;relu1&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)),</span>
<span class="p">]</span>
<span class="c1"># To preserve compatibility with Caffe weights `ceil_mode=True`</span>
<span class="c1"># is used instead of `padding=1`.</span>
<span class="n">layer0_modules</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="s1">&#39;pool&#39;</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">ceil_mode</span><span class="o">=</span><span class="kc">True</span><span class="p">)))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer0</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="n">OrderedDict</span><span class="p">(</span><span class="n">layer0_modules</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span>
<span class="n">block</span><span class="p">,</span>
<span class="n">planes</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">blocks</span><span class="o">=</span><span class="n">layers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="mi">0</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span>
<span class="n">block</span><span class="p">,</span>
<span class="n">planes</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="n">blocks</span><span class="o">=</span><span class="n">layers</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="n">downsample_kernel_size</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="n">downsample_padding</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer3</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span>
<span class="n">block</span><span class="p">,</span>
<span class="n">planes</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="n">blocks</span><span class="o">=</span><span class="n">layers</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span>
<span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="n">downsample_kernel_size</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="n">downsample_padding</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer4</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span>
<span class="n">block</span><span class="p">,</span>
<span class="n">planes</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span>
<span class="n">blocks</span><span class="o">=</span><span class="n">layers</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span>
<span class="n">stride</span><span class="o">=</span><span class="n">last_stride</span><span class="p">,</span>
<span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="n">downsample_kernel_size</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="n">downsample_padding</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">global_avgpool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_construct_fc_layer</span><span class="p">(</span><span class="n">fc_dims</span><span class="p">,</span> <span class="mi">512</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">,</span> <span class="n">dropout_p</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">feature_dim</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_make_layer</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">blocks</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span> <span class="n">reduction</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">downsample_padding</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="n">downsample</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">stride</span> <span class="o">!=</span> <span class="mi">1</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span> <span class="o">!=</span> <span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">:</span>
<span class="n">downsample</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">,</span>
<span class="n">kernel_size</span><span class="o">=</span><span class="n">downsample_kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
<span class="n">padding</span><span class="o">=</span><span class="n">downsample_padding</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">),</span>
<span class="p">)</span>
<span class="n">layers</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">block</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span> <span class="n">reduction</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span>
<span class="n">downsample</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span> <span class="o">=</span> <span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">blocks</span><span class="p">):</span>
<span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">block</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span> <span class="n">reduction</span><span class="p">))</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">layers</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_construct_fc_layer</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">fc_dims</span><span class="p">,</span> <span class="n">input_dim</span><span class="p">,</span> <span class="n">dropout_p</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Construct fully connected layer</span>
<span class="sd"> - fc_dims (list or tuple): dimensions of fc layers, if None,</span>
<span class="sd"> no fc layers are constructed</span>
<span class="sd"> - input_dim (int): input dimension</span>
<span class="sd"> - dropout_p (float): dropout probability, if None, dropout is unused</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">fc_dims</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">feature_dim</span> <span class="o">=</span> <span class="n">input_dim</span>
<span class="k">return</span> <span class="kc">None</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">fc_dims</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)),</span> <span class="s1">&#39;fc_dims must be either list or tuple, but got </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">fc_dims</span><span class="p">))</span>
<span class="n">layers</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">dim</span> <span class="ow">in</span> <span class="n">fc_dims</span><span class="p">:</span>
<span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">input_dim</span><span class="p">,</span> <span class="n">dim</span><span class="p">))</span>
<span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm1d</span><span class="p">(</span><span class="n">dim</span><span class="p">))</span>
<span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="k">if</span> <span class="n">dropout_p</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="n">dropout_p</span><span class="p">))</span>
<span class="n">input_dim</span> <span class="o">=</span> <span class="n">dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">feature_dim</span> <span class="o">=</span> <span class="n">fc_dims</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">layers</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">featuremaps</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer0</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer4</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">f</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">featuremaps</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">global_avgpool</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">v</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">v</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">v</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">training</span><span class="p">:</span>
<span class="k">return</span> <span class="n">v</span>
<span class="n">y</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss</span> <span class="o">==</span> <span class="s1">&#39;softmax&#39;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">y</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss</span> <span class="o">==</span> <span class="s1">&#39;triplet&#39;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">y</span><span class="p">,</span> <span class="n">v</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">KeyError</span><span class="p">(</span><span class="s2">&quot;Unsupported loss: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">loss</span><span class="p">))</span></div>
<span class="k">def</span> <span class="nf">init_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">model_url</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Initializes model with pretrained weights.</span>
<span class="sd"> </span>
<span class="sd"> Layers that don&#39;t match with pretrained layers in name or size are kept unchanged.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">pretrain_dict</span> <span class="o">=</span> <span class="n">model_zoo</span><span class="o">.</span><span class="n">load_url</span><span class="p">(</span><span class="n">model_url</span><span class="p">)</span>
<span class="n">model_dict</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">state_dict</span><span class="p">()</span>
<span class="n">pretrain_dict</span> <span class="o">=</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">v</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">pretrain_dict</span><span class="o">.</span><span class="n">items</span><span class="p">()</span> <span class="k">if</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">model_dict</span> <span class="ow">and</span> <span class="n">model_dict</span><span class="p">[</span><span class="n">k</span><span class="p">]</span><span class="o">.</span><span class="n">size</span><span class="p">()</span> <span class="o">==</span> <span class="n">v</span><span class="o">.</span><span class="n">size</span><span class="p">()}</span>
<span class="n">model_dict</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">pretrain_dict</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">model_dict</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">senet154</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">SENet</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="n">loss</span><span class="p">,</span>
<span class="n">block</span><span class="o">=</span><span class="n">SEBottleneck</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">36</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span>
<span class="n">groups</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
<span class="n">dropout_p</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span>
<span class="n">last_stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">fc_dims</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">model_url</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;senet154&#39;</span><span class="p">][</span><span class="s1">&#39;imagenet&#39;</span><span class="p">][</span><span class="s1">&#39;url&#39;</span><span class="p">]</span>
<span class="n">init_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">model_url</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span> <span class="nf">se_resnet50</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">SENet</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="n">loss</span><span class="p">,</span>
<span class="n">block</span><span class="o">=</span><span class="n">SEResNetBottleneck</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span>
<span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
<span class="n">dropout_p</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">inplanes</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">input_3x3</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">last_stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">fc_dims</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">model_url</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;se_resnet50&#39;</span><span class="p">][</span><span class="s1">&#39;imagenet&#39;</span><span class="p">][</span><span class="s1">&#39;url&#39;</span><span class="p">]</span>
<span class="n">init_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">model_url</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span> <span class="nf">se_resnet50_fc512</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">SENet</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="n">loss</span><span class="p">,</span>
<span class="n">block</span><span class="o">=</span><span class="n">SEResNetBottleneck</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span>
<span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
<span class="n">dropout_p</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">inplanes</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">input_3x3</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">last_stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">fc_dims</span><span class="o">=</span><span class="p">[</span><span class="mi">512</span><span class="p">],</span>
<span class="o">**</span><span class="n">kwargs</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">model_url</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;se_resnet50&#39;</span><span class="p">][</span><span class="s1">&#39;imagenet&#39;</span><span class="p">][</span><span class="s1">&#39;url&#39;</span><span class="p">]</span>
<span class="n">init_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">model_url</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span> <span class="nf">se_resnet101</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">SENet</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="n">loss</span><span class="p">,</span>
<span class="n">block</span><span class="o">=</span><span class="n">SEResNetBottleneck</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">23</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span>
<span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
<span class="n">dropout_p</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">inplanes</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">input_3x3</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">last_stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">fc_dims</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">model_url</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;se_resnet101&#39;</span><span class="p">][</span><span class="s1">&#39;imagenet&#39;</span><span class="p">][</span><span class="s1">&#39;url&#39;</span><span class="p">]</span>
<span class="n">init_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">model_url</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span> <span class="nf">se_resnet152</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">SENet</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="n">loss</span><span class="p">,</span>
<span class="n">block</span><span class="o">=</span><span class="n">SEResNetBottleneck</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">36</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span>
<span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
<span class="n">dropout_p</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">inplanes</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">input_3x3</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">last_stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">fc_dims</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">model_url</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;se_resnet152&#39;</span><span class="p">][</span><span class="s1">&#39;imagenet&#39;</span><span class="p">][</span><span class="s1">&#39;url&#39;</span><span class="p">]</span>
<span class="n">init_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">model_url</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span> <span class="nf">se_resnext50_32x4d</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">SENet</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="n">loss</span><span class="p">,</span>
<span class="n">block</span><span class="o">=</span><span class="n">SEResNeXtBottleneck</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span>
<span class="n">groups</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
<span class="n">dropout_p</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">inplanes</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">input_3x3</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">last_stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">fc_dims</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">model_url</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;se_resnext50_32x4d&#39;</span><span class="p">][</span><span class="s1">&#39;imagenet&#39;</span><span class="p">][</span><span class="s1">&#39;url&#39;</span><span class="p">]</span>
<span class="n">init_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">model_url</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span> <span class="nf">se_resnext101_32x4d</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">SENet</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="n">loss</span><span class="p">,</span>
<span class="n">block</span><span class="o">=</span><span class="n">SEResNeXtBottleneck</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">23</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span>
<span class="n">groups</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="n">reduction</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
<span class="n">dropout_p</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">inplanes</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">input_3x3</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">downsample_kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">downsample_padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">last_stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">fc_dims</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">model_url</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;se_resnext101_32x4d&#39;</span><span class="p">][</span><span class="s1">&#39;imagenet&#39;</span><span class="p">][</span><span class="s1">&#39;url&#39;</span><span class="p">]</span>
<span class="n">init_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">model_url</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>