150 lines
5.4 KiB
Python
150 lines
5.4 KiB
Python
|
from __future__ import absolute_import
|
||
|
from __future__ import print_function
|
||
|
from __future__ import division
|
||
|
|
||
|
import numpy as np
|
||
|
import copy
|
||
|
from collections import defaultdict
|
||
|
import sys
|
||
|
|
||
|
try:
|
||
|
from torchreid.eval_lib.cython_eval import eval_market1501_wrap
|
||
|
CYTHON_EVAL_AVAI = True
|
||
|
print("Cython evaluation is AVAILABLE")
|
||
|
except ImportError:
|
||
|
CYTHON_EVAL_AVAI = False
|
||
|
print("Warning: Cython evaluation is UNAVAILABLE")
|
||
|
|
||
|
|
||
|
def eval_cuhk03(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, N=100):
|
||
|
"""Evaluation with cuhk03 metric
|
||
|
Key: one image for each gallery identity is randomly sampled for each query identity.
|
||
|
Random sampling is performed N times (default: N=100).
|
||
|
"""
|
||
|
num_q, num_g = distmat.shape
|
||
|
if num_g < max_rank:
|
||
|
max_rank = num_g
|
||
|
print("Note: number of gallery samples is quite small, got {}".format(num_g))
|
||
|
indices = np.argsort(distmat, axis=1)
|
||
|
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
|
||
|
|
||
|
# compute cmc curve for each query
|
||
|
all_cmc = []
|
||
|
all_AP = []
|
||
|
num_valid_q = 0. # number of valid query
|
||
|
for q_idx in range(num_q):
|
||
|
# get query pid and camid
|
||
|
q_pid = q_pids[q_idx]
|
||
|
q_camid = q_camids[q_idx]
|
||
|
|
||
|
# remove gallery samples that have the same pid and camid with query
|
||
|
order = indices[q_idx]
|
||
|
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
|
||
|
keep = np.invert(remove)
|
||
|
|
||
|
# compute cmc curve
|
||
|
orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
|
||
|
if not np.any(orig_cmc):
|
||
|
# this condition is true when query identity does not appear in gallery
|
||
|
continue
|
||
|
|
||
|
kept_g_pids = g_pids[order][keep]
|
||
|
g_pids_dict = defaultdict(list)
|
||
|
for idx, pid in enumerate(kept_g_pids):
|
||
|
g_pids_dict[pid].append(idx)
|
||
|
|
||
|
cmc, AP = 0., 0.
|
||
|
for repeat_idx in range(N):
|
||
|
mask = np.zeros(len(orig_cmc), dtype=np.bool)
|
||
|
for _, idxs in g_pids_dict.items():
|
||
|
# randomly sample one image for each gallery person
|
||
|
rnd_idx = np.random.choice(idxs)
|
||
|
mask[rnd_idx] = True
|
||
|
masked_orig_cmc = orig_cmc[mask]
|
||
|
_cmc = masked_orig_cmc.cumsum()
|
||
|
_cmc[_cmc > 1] = 1
|
||
|
cmc += _cmc[:max_rank].astype(np.float32)
|
||
|
# compute AP
|
||
|
num_rel = masked_orig_cmc.sum()
|
||
|
tmp_cmc = masked_orig_cmc.cumsum()
|
||
|
tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)]
|
||
|
tmp_cmc = np.asarray(tmp_cmc) * masked_orig_cmc
|
||
|
AP += tmp_cmc.sum() / num_rel
|
||
|
cmc /= N
|
||
|
AP /= N
|
||
|
all_cmc.append(cmc)
|
||
|
all_AP.append(AP)
|
||
|
num_valid_q += 1.
|
||
|
|
||
|
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
|
||
|
|
||
|
all_cmc = np.asarray(all_cmc).astype(np.float32)
|
||
|
all_cmc = all_cmc.sum(0) / num_valid_q
|
||
|
mAP = np.mean(all_AP)
|
||
|
|
||
|
return all_cmc, mAP
|
||
|
|
||
|
|
||
|
def eval_market1501(distmat, q_pids, g_pids, q_camids, g_camids, max_rank):
|
||
|
"""Evaluation with market1501 metric
|
||
|
Key: for each query identity, its gallery images from the same camera view are discarded.
|
||
|
"""
|
||
|
num_q, num_g = distmat.shape
|
||
|
if num_g < max_rank:
|
||
|
max_rank = num_g
|
||
|
print("Note: number of gallery samples is quite small, got {}".format(num_g))
|
||
|
indices = np.argsort(distmat, axis=1)
|
||
|
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
|
||
|
|
||
|
# compute cmc curve for each query
|
||
|
all_cmc = []
|
||
|
all_AP = []
|
||
|
num_valid_q = 0. # number of valid query
|
||
|
for q_idx in range(num_q):
|
||
|
# get query pid and camid
|
||
|
q_pid = q_pids[q_idx]
|
||
|
q_camid = q_camids[q_idx]
|
||
|
|
||
|
# remove gallery samples that have the same pid and camid with query
|
||
|
order = indices[q_idx]
|
||
|
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
|
||
|
keep = np.invert(remove)
|
||
|
|
||
|
# compute cmc curve
|
||
|
orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
|
||
|
if not np.any(orig_cmc):
|
||
|
# this condition is true when query identity does not appear in gallery
|
||
|
continue
|
||
|
|
||
|
cmc = orig_cmc.cumsum()
|
||
|
cmc[cmc > 1] = 1
|
||
|
|
||
|
all_cmc.append(cmc[:max_rank])
|
||
|
num_valid_q += 1.
|
||
|
|
||
|
# compute average precision
|
||
|
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
|
||
|
num_rel = orig_cmc.sum()
|
||
|
tmp_cmc = orig_cmc.cumsum()
|
||
|
tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)]
|
||
|
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
|
||
|
AP = tmp_cmc.sum() / num_rel
|
||
|
all_AP.append(AP)
|
||
|
|
||
|
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
|
||
|
|
||
|
all_cmc = np.asarray(all_cmc).astype(np.float32)
|
||
|
all_cmc = all_cmc.sum(0) / num_valid_q
|
||
|
mAP = np.mean(all_AP)
|
||
|
|
||
|
return all_cmc, mAP
|
||
|
|
||
|
|
||
|
def evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50, use_metric_cuhk03=False, use_cython=True):
|
||
|
if use_metric_cuhk03:
|
||
|
return eval_cuhk03(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
|
||
|
else:
|
||
|
if use_cython and CYTHON_EVAL_AVAI:
|
||
|
return eval_market1501_wrap(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
|
||
|
else:
|
||
|
return eval_market1501(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
|