deep-person-reid/torchreid/data/datasets/dataset.py

290 lines
11 KiB
Python
Raw Normal View History

2019-03-21 20:59:54 +08:00
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import sys
import os
import os.path as osp
import numpy as np
import tarfile
import zipfile
import copy
import torch
from torchreid.utils import read_image, mkdir_if_missing, download_url
class Dataset(object):
def __init__(self, train, query, gallery, transform=None, mode='train',
combineall=False, verbose=True, **kwargs):
self.train = train
self.query = query
self.gallery = gallery
self.transform = transform
self.mode = mode
self.combineall = combineall
self.verbose = verbose
self.num_train_pids = self.get_num_pids(self.train)
self.num_train_cams = self.get_num_cams(self.train)
if self.combineall:
self.combine_all()
if self.mode == 'train':
self.data = self.train
elif self.mode == 'query':
self.data = self.query
elif self.mode == 'gallery':
self.data = self.gallery
else:
raise ValueError('Invalid mode. Got {}, but expected to be '
'one of [train | query | gallery]'.format(self.mode))
if self.verbose:
self.show_summary()
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
return len(self.data)
def __add__(self, other):
"""Adds two datasets together (only the train set)"""
train = copy.deepcopy(self.train)
for img_path, pid, camid in other.train:
pid += self.num_train_pids
camid += self.num_train_cams
train.append((img_path, pid, camid))
return Dataset(train, self.query, self.gallery, transform=self.transform,
mode=self.mode, combineall=self.combineall, verbose=self.verbose)
def __radd__(self, other):
"""Supports sum([dataset1, dataset2, dataset3])"""
if other == 0:
return self
else:
return self.__add__(other)
def parse_data(self, data):
"""Parses data
:param data: data list containing tuples of (img_path(s), pid, camid).
:type data: list
:return num_pids: number of person identities
:rtype num_pids: int
:return num_cams: number of cameras
:rtype num_cams: int
"""
pids = set()
cams = set()
for _, pid, camid in data:
pids.add(pid)
cams.add(camid)
return len(pids), len(cams)
def get_num_pids(self, data):
return self.parse_data(data)[0]
def get_num_cams(self, data):
return self.parse_data(data)[1]
def show_summary(self):
pass
def combine_all(self):
"""Combines train, query and gallery"""
combined = copy.deepcopy(self.train)
# relabel pids in gallery
g_pids = set()
for _, pid, _ in self.gallery:
if pid==0 or pid==-1:
continue
g_pids.add(pid)
pid2label = {pid: i for i, pid in enumerate(g_pids)}
def _combine_data(data):
for img_path, pid, camid in data:
if pid==0 or pid==-1:
continue
pid = pid2label[pid] + self.num_train_pids
combined.append((img_path, pid, camid))
_combine_data(self.query)
_combine_data(self.gallery)
self.train = combined
self.num_train_pids = self.get_num_pids(self.train)
def download_dataset(self, dataset_dir, dataset_url):
"""Downloads and extracts dataset
:param dataset_dir: dataset directory
:type dataset_dir: str
:param dataset_url: url to download dataset
:type dataset_url: str
"""
if osp.exists(dataset_dir):
return
if dataset_url is None:
raise RuntimeError('{} dataset needs to be manually '
'prepared, please follow the '
'document to prepare this dataset'.format(self.__class__.__name__))
print('Creating directory "{}"'.format(dataset_dir))
mkdir_if_missing(dataset_dir)
fpath = osp.join(dataset_dir, osp.basename(dataset_url))
print('Downloading {} dataset to "{}"'.format(self.__class__.__name__, dataset_dir))
download_url(dataset_url, fpath)
print('Extracting "{}"'.format(fpath))
extension = osp.basename(fpath).split('.')[-1]
try:
tar = tarfile.open(fpath)
tar.extractall(path=dataset_dir)
tar.close()
except:
zip_ref = zipfile.ZipFile(fpath, 'r')
zip_ref.extractall(dataset_dir)
zip_ref.close()
print('{} dataset is ready'.format(self.__class__.__name__))
def check_before_run(self, required_files):
"""Checks if required files exist before going deeper
:param required_files: string name(s) of file(s)
:type required_files: str or list
"""
if isinstance(required_files, str):
required_files = [required_files]
for fpath in required_files:
if not osp.exists(fpath):
raise RuntimeError('"{}" is not found'.format(fpath))
def __repr__(self):
num_train_pids, num_train_cams = self.parse_data(self.train)
num_query_pids, num_query_cams = self.parse_data(self.query)
num_gallery_pids, num_gallery_cams = self.parse_data(self.gallery)
msg = ' ----------------------------------------\n' \
' subset | # ids | # items | # cameras\n' \
' ----------------------------------------\n' \
' train | {:5d} | {:7d} | {:9d}\n' \
' query | {:5d} | {:7d} | {:9d}\n' \
' gallery | {:5d} | {:7d} | {:9d}\n' \
' ----------------------------------------\n' \
' items: images/tracklets for image/video dataset\n'.format(
num_train_pids, len(self.train), num_train_cams,
num_query_pids, len(self.query), num_query_cams,
num_gallery_pids, len(self.gallery), num_gallery_cams
)
return msg
class ImageDataset(Dataset):
def __init__(self, train, query, gallery, **kwargs):
super(ImageDataset, self).__init__(train, query, gallery, **kwargs)
def __getitem__(self, index):
img_path, pid, camid = self.data[index]
img = read_image(img_path)
if self.transform is not None:
img = self.transform(img)
return img, pid, camid, img_path
def show_summary(self):
num_train_pids, num_train_cams = self.parse_data(self.train)
num_query_pids, num_query_cams = self.parse_data(self.query)
num_gallery_pids, num_gallery_cams = self.parse_data(self.gallery)
print('=> Loaded {}'.format(self.__class__.__name__))
print(' ----------------------------------------')
print(' subset | # ids | # images | # cameras')
print(' ----------------------------------------')
print(' train | {:5d} | {:8d} | {:9d}'.format(num_train_pids, len(self.train), num_train_cams))
print(' query | {:5d} | {:8d} | {:9d}'.format(num_query_pids, len(self.query), num_query_cams))
print(' gallery | {:5d} | {:8d} | {:9d}'.format(num_gallery_pids, len(self.gallery), num_gallery_cams))
print(' ----------------------------------------')
class VideoDataset(Dataset):
def __init__(self, train, query, gallery, seq_len=15, sample_method='evenly', **kwargs):
super(VideoDataset, self).__init__(train, query, gallery, **kwargs)
self.seq_len = seq_len
self.sample_method = sample_method
if self.transform is None:
raise RuntimeError('transform must not be None')
def __getitem__(self, index):
img_paths, pid, camid = self.data[index]
num_imgs = len(img_paths)
if self.sample_method == 'random':
# Randomly samples seq_len images from a tracklet of length num_imgs,
# if num_imgs is smaller than seq_len, then replicates images
indices = np.arange(num_imgs)
replace = False if num_imgs>=self.seq_len else True
indices = np.random.choice(indices, size=self.seq_len, replace=replace)
# sort indices to keep temporal order (comment it to be order-agnostic)
indices = np.sort(indices)
elif self.sample_method == 'evenly':
# Evenly samples seq_len images from a tracklet
if num_imgs >= self.seq_len:
num_imgs -= num_imgs % self.seq_len
indices = np.arange(0, num_imgs, num_imgs/self.seq_len)
else:
# if num_imgs is smaller than seq_len, simply replicate the last image
# until the seq_len requirement is satisfied
indices = np.arange(0, num_imgs)
num_pads = self.seq_len - num_imgs
indices = np.concatenate([indices, np.ones(num_pads).astype(np.int32)*(num_imgs-1)])
assert len(indices) == self.seq_len
elif self.sample_method == 'all':
# Samples all images in a tracklet. batch_size must be set to 1
indices = np.arange(num_imgs)
else:
raise ValueError('Unknown sample method: {}'.format(self.sample_method))
imgs = []
for index in indices:
img_path = img_paths[int(index)]
img = read_image(img_path)
if self.transform is not None:
img = self.transform(img)
img = img.unsqueeze(0) # img must be torch.Tensor
imgs.append(img)
imgs = torch.cat(imgs, dim=0)
return imgs, pid, camid
def show_summary(self):
num_train_pids, num_train_cams = self.parse_data(self.train)
num_query_pids, num_query_cams = self.parse_data(self.query)
num_gallery_pids, num_gallery_cams = self.parse_data(self.gallery)
print('=> Loaded {}'.format(self.__class__.__name__))
print(' -------------------------------------------')
print(' subset | # ids | # tracklets | # cameras')
print(' -------------------------------------------')
print(' train | {:5d} | {:11d} | {:9d}'.format(num_train_pids, len(self.train), num_train_cams))
print(' query | {:5d} | {:11d} | {:9d}'.format(num_query_pids, len(self.query), num_query_cams))
print(' gallery | {:5d} | {:11d} | {:9d}'.format(num_gallery_pids, len(self.gallery), num_gallery_cams))
print(' -------------------------------------------')