87 lines
3.0 KiB
Python
87 lines
3.0 KiB
Python
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
|
||
|
from collections import defaultdict
|
||
|
import numpy as np
|
||
|
import copy
|
||
|
import random
|
||
|
|
||
|
import torch
|
||
|
from torch.utils.data.sampler import Sampler, RandomSampler
|
||
|
|
||
|
|
||
|
class RandomIdentitySampler(Sampler):
|
||
|
"""Randomly samples N identities each with K instances.
|
||
|
|
||
|
Args:
|
||
|
data_source (list): contains a list of (img_path, pid, camid).
|
||
|
batch_size (int): number of examples in a batch.
|
||
|
num_instances (int): number of instances per identity in a batch.
|
||
|
"""
|
||
|
def __init__(self, data_source, batch_size, num_instances):
|
||
|
self.data_source = data_source
|
||
|
self.batch_size = batch_size
|
||
|
self.num_instances = num_instances
|
||
|
self.num_pids_per_batch = self.batch_size // self.num_instances
|
||
|
self.index_dic = defaultdict(list)
|
||
|
for index, (_, pid, _) in enumerate(self.data_source):
|
||
|
self.index_dic[pid].append(index)
|
||
|
self.pids = list(self.index_dic.keys())
|
||
|
|
||
|
# estimate number of examples in an epoch
|
||
|
self.length = 0
|
||
|
for pid in self.pids:
|
||
|
idxs = self.index_dic[pid]
|
||
|
num = len(idxs)
|
||
|
if num < self.num_instances:
|
||
|
num = self.num_instances
|
||
|
self.length += num - num % self.num_instances
|
||
|
|
||
|
def __iter__(self):
|
||
|
batch_idxs_dict = defaultdict(list)
|
||
|
|
||
|
for pid in self.pids:
|
||
|
idxs = copy.deepcopy(self.index_dic[pid])
|
||
|
if len(idxs) < self.num_instances:
|
||
|
idxs = np.random.choice(idxs, size=self.num_instances, replace=True)
|
||
|
random.shuffle(idxs)
|
||
|
batch_idxs = []
|
||
|
for idx in idxs:
|
||
|
batch_idxs.append(idx)
|
||
|
if len(batch_idxs) == self.num_instances:
|
||
|
batch_idxs_dict[pid].append(batch_idxs)
|
||
|
batch_idxs = []
|
||
|
|
||
|
avai_pids = copy.deepcopy(self.pids)
|
||
|
final_idxs = []
|
||
|
|
||
|
while len(avai_pids) >= self.num_pids_per_batch:
|
||
|
selected_pids = random.sample(avai_pids, self.num_pids_per_batch)
|
||
|
for pid in selected_pids:
|
||
|
batch_idxs = batch_idxs_dict[pid].pop(0)
|
||
|
final_idxs.extend(batch_idxs)
|
||
|
if len(batch_idxs_dict[pid]) == 0:
|
||
|
avai_pids.remove(pid)
|
||
|
|
||
|
return iter(final_idxs)
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.length
|
||
|
|
||
|
|
||
|
def build_train_sampler(data_source, train_sampler, batch_size, num_instances, **kwargs):
|
||
|
"""Builds a training sampler.
|
||
|
|
||
|
Args:
|
||
|
data_source (list): contains a list of (img_path, pid, camid).
|
||
|
train_sampler (str): sampler name (default: RandomSampler).
|
||
|
batch_size (int): training batch size.
|
||
|
num_instances (int): number of instances per identity in a batch (for RandomIdentitySampler).
|
||
|
"""
|
||
|
if train_sampler == 'RandomIdentitySampler':
|
||
|
sampler = RandomIdentitySampler(data_source, batch_size, num_instances)
|
||
|
|
||
|
else:
|
||
|
sampler = RandomSampler(data_source)
|
||
|
|
||
|
return sampler
|