2019-03-25 01:22:43 +08:00
<!DOCTYPE html>
<!-- [if IE 8]><html class="no - js lt - ie9" lang="en" > <![endif] -->
<!-- [if gt IE 8]><! --> < html class = "no-js" lang = "en" > <!-- <![endif] -->
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width, initial-scale=1.0" >
2019-07-08 22:49:21 +08:00
< title > torchreid.data.datamanager — torchreid 0.8.1 documentation< / title >
2019-03-25 01:22:43 +08:00
< script type = "text/javascript" src = "../../../_static/js/modernizr.min.js" > < / script >
< script type = "text/javascript" id = "documentation_options" data-url_root = "../../../" src = "../../../_static/documentation_options.js" > < / script >
< script type = "text/javascript" src = "../../../_static/jquery.js" > < / script >
< script type = "text/javascript" src = "../../../_static/underscore.js" > < / script >
< script type = "text/javascript" src = "../../../_static/doctools.js" > < / script >
< script type = "text/javascript" src = "../../../_static/language_data.js" > < / script >
< script async = "async" type = "text/javascript" src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML" > < / script >
< script type = "text/javascript" src = "../../../_static/js/theme.js" > < / script >
< link rel = "stylesheet" href = "../../../_static/css/theme.css" type = "text/css" / >
< link rel = "stylesheet" href = "../../../_static/pygments.css" type = "text/css" / >
< link rel = "index" title = "Index" href = "../../../genindex.html" / >
< link rel = "search" title = "Search" href = "../../../search.html" / >
< / head >
< body class = "wy-body-for-nav" >
< div class = "wy-grid-for-nav" >
< nav data-toggle = "wy-nav-shift" class = "wy-nav-side" >
< div class = "wy-side-scroll" >
< div class = "wy-side-nav-search" >
< a href = "../../../index.html" class = "icon icon-home" > torchreid
< / a >
< div class = "version" >
2019-07-08 22:49:21 +08:00
0.8.1
2019-03-25 01:22:43 +08:00
< / div >
< div role = "search" >
< form id = "rtd-search-form" class = "wy-form" action = "../../../search.html" method = "get" >
< input type = "text" name = "q" placeholder = "Search docs" / >
< input type = "hidden" name = "check_keywords" value = "yes" / >
< input type = "hidden" name = "area" value = "default" / >
< / form >
< / div >
< / div >
< div class = "wy-menu wy-menu-vertical" data-spy = "affix" role = "navigation" aria-label = "main navigation" >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../user_guide.html" > How-to< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../datasets.html" > Datasets< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../evaluation.html" > Evaluation< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Package Reference< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/data.html" > torchreid.data< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/engine.html" > torchreid.engine< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/losses.html" > torchreid.losses< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/metrics.html" > torchreid.metrics< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/models.html" > torchreid.models< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/optim.html" > torchreid.optim< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/utils.html" > torchreid.utils< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Resources< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../AWESOME_REID.html" > Awesome-ReID< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../MODEL_ZOO.html" > Model Zoo< / a > < / li >
< / ul >
< / div >
< / div >
< / nav >
< section data-toggle = "wy-nav-shift" class = "wy-nav-content-wrap" >
< nav class = "wy-nav-top" aria-label = "top navigation" >
< i data-toggle = "wy-nav-top" class = "fa fa-bars" > < / i >
< a href = "../../../index.html" > torchreid< / a >
< / nav >
< div class = "wy-nav-content" >
< div class = "rst-content" >
< div role = "navigation" aria-label = "breadcrumbs navigation" >
< ul class = "wy-breadcrumbs" >
< li > < a href = "../../../index.html" > Docs< / a > » < / li >
< li > < a href = "../../index.html" > Module code< / a > » < / li >
< li > torchreid.data.datamanager< / li >
< li class = "wy-breadcrumbs-aside" >
< / li >
< / ul >
< hr / >
< / div >
< div role = "main" class = "document" itemscope = "itemscope" itemtype = "http://schema.org/Article" >
< div itemprop = "articleBody" >
< h1 > Source code for torchreid.data.datamanager< / h1 > < div class = "highlight" > < pre >
< span > < / span > < span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > absolute_import< / span >
< span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > print_function< / span >
< span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > division< / span >
< span class = "kn" > import< / span > < span class = "nn" > torch< / span >
< span class = "kn" > from< / span > < span class = "nn" > torchreid.data.sampler< / span > < span class = "k" > import< / span > < span class = "n" > build_train_sampler< / span >
< span class = "kn" > from< / span > < span class = "nn" > torchreid.data.transforms< / span > < span class = "k" > import< / span > < span class = "n" > build_transforms< / span >
< span class = "kn" > from< / span > < span class = "nn" > torchreid.data.datasets< / span > < span class = "k" > import< / span > < span class = "n" > init_image_dataset< / span > < span class = "p" > ,< / span > < span class = "n" > init_video_dataset< / span >
< div class = "viewcode-block" id = "DataManager" > < a class = "viewcode-back" href = "../../../pkg/data.html#torchreid.data.datamanager.DataManager" > [docs]< / a > < span class = "k" > class< / span > < span class = "nc" > DataManager< / span > < span class = "p" > (< / span > < span class = "nb" > object< / span > < span class = "p" > ):< / span >
2019-07-03 20:46:28 +08:00
< span class = "sa" > r< / span > < span class = "sd" > " " " Base data manager.< / span >
2019-03-25 01:22:43 +08:00
< span class = "sd" > Args:< / span >
< span class = "sd" > sources (str or list): source dataset(s).< / span >
< span class = "sd" > targets (str or list, optional): target dataset(s). If not given,< / span >
< span class = "sd" > it equals to ``sources``.< / span >
< span class = "sd" > height (int, optional): target image height. Default is 256.< / span >
< span class = "sd" > width (int, optional): target image width. Default is 128.< / span >
2019-07-03 20:46:28 +08:00
< span class = "sd" > transforms (str or list of str, optional): transformations applied to model training.< / span >
< span class = "sd" > Default is ' random_flip' .< / span >
2019-03-25 01:22:43 +08:00
< span class = "sd" > use_cpu (bool, optional): use cpu. Default is False.< / span >
< span class = "sd" > " " " < / span >
2019-07-03 20:46:28 +08:00
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > sources< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "n" > height< / span > < span class = "o" > =< / span > < span class = "mi" > 256< / span > < span class = "p" > ,< / span > < span class = "n" > width< / span > < span class = "o" > =< / span > < span class = "mi" > 128< / span > < span class = "p" > ,< / span > < span class = "n" > transforms< / span > < span class = "o" > =< / span > < span class = "s1" > ' random_flip' < / span > < span class = "p" > ,< / span >
< span class = "n" > use_cpu< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ):< / span >
2019-03-25 01:22:43 +08:00
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "o" > =< / span > < span class = "n" > sources< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "n" > targets< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "ow" > is< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "k" > raise< / span > < span class = "ne" > ValueError< / span > < span class = "p" > (< / span > < span class = "s1" > ' sources must not be None' < / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "p" > ,< / span > < span class = "nb" > str< / span > < span class = "p" > ):< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "p" > ]< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "ow" > is< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span >
< span class = "k" > if< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > ,< / span > < span class = "nb" > str< / span > < span class = "p" > ):< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > ]< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > transform_tr< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > transform_te< / span > < span class = "o" > =< / span > < span class = "n" > build_transforms< / span > < span class = "p" > (< / span >
2019-07-03 20:46:28 +08:00
< span class = "n" > height< / span > < span class = "p" > ,< / span > < span class = "n" > width< / span > < span class = "p" > ,< / span > < span class = "n" > transforms< / span >
2019-03-25 01:22:43 +08:00
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "o" > =< / span > < span class = "p" > (< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > cuda< / span > < span class = "o" > .< / span > < span class = "n" > is_available< / span > < span class = "p" > ()< / span > < span class = "ow" > and< / span > < span class = "ow" > not< / span > < span class = "n" > use_cpu< / span > < span class = "p" > )< / span >
< span class = "nd" > @property< / span >
< span class = "k" > def< / span > < span class = "nf" > num_train_pids< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Returns the number of training person identities." " " < / span >
< span class = "k" > return< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _num_train_pids< / span >
< span class = "nd" > @property< / span >
< span class = "k" > def< / span > < span class = "nf" > num_train_cams< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Returns the number of training cameras." " " < / span >
< span class = "k" > return< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _num_train_cams< / span >
< div class = "viewcode-block" id = "DataManager.return_dataloaders" > < a class = "viewcode-back" href = "../../../pkg/data.html#torchreid.data.datamanager.DataManager.return_dataloaders" > [docs]< / a > < span class = "k" > def< / span > < span class = "nf" > return_dataloaders< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Returns trainloader and testloader." " " < / span >
< span class = "k" > return< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > trainloader< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testloader< / span > < / div >
< div class = "viewcode-block" id = "DataManager.return_testdataset_by_name" > < a class = "viewcode-back" href = "../../../pkg/data.html#torchreid.data.datamanager.DataManager.return_testdataset_by_name" > [docs]< / a > < span class = "k" > def< / span > < span class = "nf" > return_testdataset_by_name< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > name< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Returns query and gallery of a test dataset, each containing< / span >
< span class = "sd" > tuples of (img_path(s), pid, camid).< / span >
< span class = "sd" > Args:< / span >
< span class = "sd" > name (str): dataset name.< / span >
< span class = "sd" > " " " < / span >
< span class = "k" > return< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testdataset< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' query' < / span > < span class = "p" > ],< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testdataset< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > ]< / span > < / div > < / div >
< div class = "viewcode-block" id = "ImageDataManager" > < a class = "viewcode-back" href = "../../../pkg/data.html#torchreid.data.datamanager.ImageDataManager" > [docs]< / a > < span class = "k" > class< / span > < span class = "nc" > ImageDataManager< / span > < span class = "p" > (< / span > < span class = "n" > DataManager< / span > < span class = "p" > ):< / span >
2019-07-03 20:46:28 +08:00
< span class = "sa" > r< / span > < span class = "sd" > " " " Image data manager.< / span >
2019-03-25 01:22:43 +08:00
< span class = "sd" > Args:< / span >
< span class = "sd" > root (str): root path to datasets.< / span >
< span class = "sd" > sources (str or list): source dataset(s).< / span >
< span class = "sd" > targets (str or list, optional): target dataset(s). If not given,< / span >
< span class = "sd" > it equals to ``sources``.< / span >
< span class = "sd" > height (int, optional): target image height. Default is 256.< / span >
< span class = "sd" > width (int, optional): target image width. Default is 128.< / span >
2019-07-03 20:46:28 +08:00
< span class = "sd" > transforms (str or list of str, optional): transformations applied to model training.< / span >
< span class = "sd" > Default is ' random_flip' .< / span >
2019-03-25 01:22:43 +08:00
< span class = "sd" > use_cpu (bool, optional): use cpu. Default is False.< / span >
< span class = "sd" > split_id (int, optional): split id (*0-based*). Default is 0.< / span >
< span class = "sd" > combineall (bool, optional): combine train, query and gallery in a dataset for< / span >
< span class = "sd" > training. Default is False.< / span >
< span class = "sd" > batch_size (int, optional): number of images in a batch. Default is 32.< / span >
< span class = "sd" > workers (int, optional): number of workers. Default is 4.< / span >
< span class = "sd" > num_instances (int, optional): number of instances per identity in a batch.< / span >
< span class = "sd" > Default is 4.< / span >
< span class = "sd" > train_sampler (str, optional): sampler. Default is empty (``RandomSampler``).< / span >
< span class = "sd" > cuhk03_labeled (bool, optional): use cuhk03 labeled images.< / span >
< span class = "sd" > Default is False (defaul is to use detected images).< / span >
< span class = "sd" > cuhk03_classic_split (bool, optional): use the classic split in cuhk03.< / span >
< span class = "sd" > Default is False.< / span >
< span class = "sd" > market1501_500k (bool, optional): add 500K distractors to the gallery< / span >
< span class = "sd" > set in market1501. Default is False.< / span >
< span class = "sd" > Examples::< / span >
< span class = "sd" > datamanager = torchreid.data.ImageDataManager(< / span >
< span class = "sd" > root=' path/to/reid-data' ,< / span >
< span class = "sd" > sources=' market1501' ,< / span >
< span class = "sd" > height=256,< / span >
< span class = "sd" > width=128,< / span >
< span class = "sd" > batch_size=32< / span >
< span class = "sd" > )< / span >
< span class = "sd" > " " " < / span >
2019-07-03 20:46:28 +08:00
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > root< / span > < span class = "o" > =< / span > < span class = "s1" > ' ' < / span > < span class = "p" > ,< / span > < span class = "n" > sources< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "n" > height< / span > < span class = "o" > =< / span > < span class = "mi" > 256< / span > < span class = "p" > ,< / span > < span class = "n" > width< / span > < span class = "o" > =< / span > < span class = "mi" > 128< / span > < span class = "p" > ,< / span > < span class = "n" > transforms< / span > < span class = "o" > =< / span > < span class = "s1" > ' random_flip' < / span > < span class = "p" > ,< / span >
< span class = "n" > use_cpu< / span > < span class = "o" > =< /span>< span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > split_id< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > ,< / span > < span class = "n" > combineall< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
2019-03-25 01:22:43 +08:00
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "mi" > 32< / span > < span class = "p" > ,< / span > < span class = "n" > workers< / span > < span class = "o" > =< / span > < span class = "mi" > 4< / span > < span class = "p" > ,< / span > < span class = "n" > num_instances< / span > < span class = "o" > =< / span > < span class = "mi" > 4< / span > < span class = "p" > ,< / span > < span class = "n" > train_sampler< / span > < span class = "o" > =< / span > < span class = "s1" > ' ' < / span > < span class = "p" > ,< / span >
< span class = "n" > cuhk03_labeled< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > cuhk03_classic_split< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > market1501_500k< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > ImageDataManager< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > (< / span > < span class = "n" > sources< / span > < span class = "o" > =< / span > < span class = "n" > sources< / span > < span class = "p" > ,< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "n" > targets< / span > < span class = "p" > ,< / span > < span class = "n" > height< / span > < span class = "o" > =< / span > < span class = "n" > height< / span > < span class = "p" > ,< / span > < span class = "n" > width< / span > < span class = "o" > =< / span > < span class = "n" > width< / span > < span class = "p" > ,< / span >
2019-07-03 20:46:28 +08:00
< span class = "n" > transforms< / span > < span class = "o" > =< / span > < span class = "n" > transforms< / span > < span class = "p" > ,< / span > < span class = "n" > use_cpu< / span > < span class = "o" > =< / span > < span class = "n" > use_cpu< / span > < span class = "p" > )< / span >
2019-03-25 07:34:37 +08:00
2019-03-25 01:22:43 +08:00
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' => Loading train (source) dataset' < / span > < span class = "p" > )< / span >
< span class = "n" > trainset< / span > < span class = "o" > =< / span > < span class = "p" > []< / span >
< span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "p" > :< / span >
< span class = "n" > trainset_< / span > < span class = "o" > =< / span > < span class = "n" > init_image_dataset< / span > < span class = "p" > (< / span >
< span class = "n" > name< / span > < span class = "p" > ,< / span >
< span class = "n" > transform< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > transform_tr< / span > < span class = "p" > ,< / span >
< span class = "n" > mode< / span > < span class = "o" > =< / span > < span class = "s1" > ' train' < / span > < span class = "p" > ,< / span >
< span class = "n" > combineall< / span > < span class = "o" > =< / span > < span class = "n" > combineall< / span > < span class = "p" > ,< / span >
< span class = "n" > root< / span > < span class = "o" > =< / span > < span class = "n" > root< / span > < span class = "p" > ,< / span >
< span class = "n" > split_id< / span > < span class = "o" > =< / span > < span class = "n" > split_id< / span > < span class = "p" > ,< / span >
< span class = "n" > cuhk03_labeled< / span > < span class = "o" > =< / span > < span class = "n" > cuhk03_labeled< / span > < span class = "p" > ,< / span >
< span class = "n" > cuhk03_classic_split< / span > < span class = "o" > =< / span > < span class = "n" > cuhk03_classic_split< / span > < span class = "p" > ,< / span >
< span class = "n" > market1501_500k< / span > < span class = "o" > =< / span > < span class = "n" > market1501_500k< / span >
< span class = "p" > )< / span >
< span class = "n" > trainset< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > trainset_< / span > < span class = "p" > )< / span >
< span class = "n" > trainset< / span > < span class = "o" > =< / span > < span class = "nb" > sum< / span > < span class = "p" > (< / span > < span class = "n" > trainset< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _num_train_pids< / span > < span class = "o" > =< / span > < span class = "n" > trainset< / span > < span class = "o" > .< / span > < span class = "n" > num_train_pids< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _num_train_cams< / span > < span class = "o" > =< / span > < span class = "n" > trainset< / span > < span class = "o" > .< / span > < span class = "n" > num_train_cams< / span >
< span class = "n" > train_sampler< / span > < span class = "o" > =< / span > < span class = "n" > build_train_sampler< / span > < span class = "p" > (< / span >
< span class = "n" > trainset< / span > < span class = "o" > .< / span > < span class = "n" > train< / span > < span class = "p" > ,< / span > < span class = "n" > train_sampler< / span > < span class = "p" > ,< / span >
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "n" > batch_size< / span > < span class = "p" > ,< / span >
< span class = "n" > num_instances< / span > < span class = "o" > =< / span > < span class = "n" > num_instances< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > trainloader< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > utils< / span > < span class = "o" > .< / span > < span class = "n" > data< / span > < span class = "o" > .< / span > < span class = "n" > DataLoader< / span > < span class = "p" > (< / span >
< span class = "n" > trainset< / span > < span class = "p" > ,< / span >
< span class = "n" > sampler< / span > < span class = "o" > =< / span > < span class = "n" > train_sampler< / span > < span class = "p" > ,< / span >
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "n" > batch_size< / span > < span class = "p" > ,< / span >
< span class = "n" > shuffle< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > num_workers< / span > < span class = "o" > =< / span > < span class = "n" > workers< / span > < span class = "p" > ,< / span >
< span class = "n" > pin_memory< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "p" > ,< / span >
< span class = "n" > drop_last< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span >
< span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' => Loading test (target) dataset' < / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testloader< / span > < span class = "o" > =< / span > < span class = "p" > {< / span > < span class = "n" > name< / span > < span class = "p" > :< / span > < span class = "p" > {< / span > < span class = "s1" > ' query' < / span > < span class = "p" > :< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > :< / span > < span class = "kc" > None< / span > < span class = "p" > }< / span > < span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > }< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testdataset< / span > < span class = "o" > =< / span > < span class = "p" > {< / span > < span class = "n" > name< / span > < span class = "p" > :< / span > < span class = "p" > {< / span > < span class = "s1" > ' query' < / span > < span class = "p" > :< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > :< / span > < span class = "kc" > None< / span > < span class = "p" > }< / span > < span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > }< / span >
< span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > :< / span >
< span class = "c1" > # build query loader< / span >
< span class = "n" > queryset< / span > < span class = "o" > =< / span > < span class = "n" > init_image_dataset< / span > < span class = "p" > (< / span >
< span class = "n" > name< / span > < span class = "p" > ,< / span >
< span class = "n" > transform< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > transform_te< / span > < span class = "p" > ,< / span >
< span class = "n" > mode< / span > < span class = "o" > =< / span > < span class = "s1" > ' query' < / span > < span class = "p" > ,< / span >
< span class = "n" > combineall< / span > < span class = "o" > =< / span > < span class = "n" > combineall< / span > < span class = "p" > ,< / span >
< span class = "n" > root< / span > < span class = "o" > =< / span > < span class = "n" > root< / span > < span class = "p" > ,< / span >
< span class = "n" > split_id< / span > < span class = "o" > =< / span > < span class = "n" > split_id< / span > < span class = "p" > ,< / span >
< span class = "n" > cuhk03_labeled< / span > < span class = "o" > =< / span > < span class = "n" > cuhk03_labeled< / span > < span class = "p" > ,< / span >
< span class = "n" > cuhk03_classic_split< / span > < span class = "o" > =< / span > < span class = "n" > cuhk03_classic_split< / span > < span class = "p" > ,< / span >
< span class = "n" > market1501_500k< / span > < span class = "o" > =< / span > < span class = "n" > market1501_500k< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testloader< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' query' < / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > utils< / span > < span class = "o" > .< / span > < span class = "n" > data< / span > < span class = "o" > .< / span > < span class = "n" > DataLoader< / span > < span class = "p" > (< / span >
< span class = "n" > queryset< / span > < span class = "p" > ,< / span >
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "n" > batch_size< / span > < span class = "p" > ,< / span >
< span class = "n" > shuffle< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > num_workers< / span > < span class = "o" > =< / span > < span class = "n" > workers< / span > < span class = "p" > ,< / span >
< span class = "n" > pin_memory< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "p" > ,< / span >
< span class = "n" > drop_last< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span >
< span class = "p" > )< / span >
< span class = "c1" > # build gallery loader< / span >
< span class = "n" > galleryset< / span > < span class = "o" > =< / span > < span class = "n" > init_image_dataset< / span > < span class = "p" > (< / span >
< span class = "n" > name< / span > < span class = "p" > ,< / span >
< span class = "n" > transform< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > transform_te< / span > < span class = "p" > ,< / span >
< span class = "n" > mode< / span > < span class = "o" > =< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > ,< / span >
< span class = "n" > combineall< / span > < span class = "o" > =< / span > < span class = "n" > combineall< / span > < span class = "p" > ,< / span >
< span class = "n" > verbose< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > root< / span > < span class = "o" > =< / span > < span class = "n" > root< / span > < span class = "p" > ,< / span >
< span class = "n" > split_id< / span > < span class = "o" > =< / span > < span class = "n" > split_id< / span > < span class = "p" > ,< / span >
< span class = "n" > cuhk03_labeled< / span > < span class = "o" > =< / span > < span class = "n" > cuhk03_labeled< / span > < span class = "p" > ,< / span >
< span class = "n" > cuhk03_classic_split< / span > < span class = "o" > =< / span > < span class = "n" > cuhk03_classic_split< / span > < span class = "p" > ,< / span >
< span class = "n" > market1501_500k< / span > < span class = "o" > =< / span > < span class = "n" > market1501_500k< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testloader< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > utils< / span > < span class = "o" > .< / span > < span class = "n" > data< / span > < span class = "o" > .< / span > < span class = "n" > DataLoader< / span > < span class = "p" > (< / span >
< span class = "n" > galleryset< / span > < span class = "p" > ,< / span >
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "n" > batch_size< / span > < span class = "p" > ,< / span >
< span class = "n" > shuffle< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > num_workers< / span > < span class = "o" > =< / span > < span class = "n" > workers< / span > < span class = "p" > ,< / span >
< span class = "n" > pin_memory< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "p" > ,< / span >
< span class = "n" > drop_last< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testdataset< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' query' < / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > queryset< / span > < span class = "o" > .< / span > < span class = "n" > query< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testdataset< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > galleryset< / span > < span class = "o" > .< / span > < span class = "n" > gallery< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' < / span > < span class = "se" > \n< / span > < span class = "s1" > ' < / span > < span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' **************** Summary ****************' < / span > < span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' train : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "p" > ))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' # train datasets : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "p" > )))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' # train ids : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > num_train_pids< / span > < span class = "p" > ))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' # train images : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "n" > trainset< / span > < span class = "p" > )))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' # train cameras : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > num_train_cams< / span > < span class = "p" > ))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' test : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > ))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' *****************************************' < / span > < span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' < / span > < span class = "se" > \n< / span > < span class = "s1" > ' < / span > < span class = "p" > )< / span > < / div >
< div class = "viewcode-block" id = "VideoDataManager" > < a class = "viewcode-back" href = "../../../pkg/data.html#torchreid.data.datamanager.VideoDataManager" > [docs]< / a > < span class = "k" > class< / span > < span class = "nc" > VideoDataManager< / span > < span class = "p" > (< / span > < span class = "n" > DataManager< / span > < span class = "p" > ):< / span >
2019-07-03 20:46:28 +08:00
< span class = "sa" > r< / span > < span class = "sd" > " " " Video data manager.< / span >
2019-03-25 01:22:43 +08:00
< span class = "sd" > Args:< / span >
< span class = "sd" > root (str): root path to datasets.< / span >
< span class = "sd" > sources (str or list): source dataset(s).< / span >
< span class = "sd" > targets (str or list, optional): target dataset(s). If not given,< / span >
< span class = "sd" > it equals to ``sources``.< / span >
< span class = "sd" > height (int, optional): target image height. Default is 256.< / span >
< span class = "sd" > width (int, optional): target image width. Default is 128.< / span >
2019-07-03 20:46:28 +08:00
< span class = "sd" > transforms (str or list of str, optional): transformations applied to model training.< / span >
< span class = "sd" > Default is ' random_flip' .< / span >
2019-03-25 01:22:43 +08:00
< span class = "sd" > use_cpu (bool, optional): use cpu. Default is False.< / span >
< span class = "sd" > split_id (int, optional): split id (*0-based*). Default is 0.< / span >
< span class = "sd" > combineall (bool, optional): combine train, query and gallery in a dataset for< / span >
< span class = "sd" > training. Default is False.< / span >
< span class = "sd" > batch_size (int, optional): number of *tracklets* in a batch. Default is 3.< / span >
< span class = "sd" > workers (int, optional): number of workers. Default is 4.< / span >
< span class = "sd" > num_instances (int, optional): number of instances per identity in a batch.< / span >
< span class = "sd" > Default is 4.< / span >
< span class = "sd" > train_sampler (str, optional): sampler. Default is empty (``RandomSampler``).< / span >
< span class = "sd" > seq_len (int, optional): how many images to sample in a tracklet. Default is 15.< / span >
< span class = "sd" > sample_method (str, optional): how to sample images in a tracklet. Default is " evenly" .< / span >
< span class = "sd" > Choices are [" evenly" , " random" , " all" ]. " evenly" and " random" sample ``seq_len``< / span >
< span class = "sd" > images in a tracklet while " all" samples all images in a tracklet, thus ``batch_size``< / span >
< span class = "sd" > needs to be set to 1.< / span >
< span class = "sd" > Examples::< / span >
< span class = "sd" > datamanager = torchreid.data.VideoDataManager(< / span >
< span class = "sd" > root=' path/to/reid-data' ,< / span >
< span class = "sd" > sources=' mars' ,< / span >
< span class = "sd" > height=256,< / span >
< span class = "sd" > width=128,< / span >
< span class = "sd" > batch_size=3,< / span >
< span class = "sd" > seq_len=15,< / span >
< span class = "sd" > sample_method=' evenly' < / span >
< span class = "sd" > )< / span >
2019-07-03 22:55:04 +08:00
< span class = "sd" > .. note::< / span >
< span class = "sd" > The current implementation only supports image-like training. Therefore, each image in a< / span >
< span class = "sd" > sampled tracklet will undergo independent transformation functions. To achieve tracklet-aware< / span >
< span class = "sd" > training, you need to modify the transformation functions for video reid such that each function< / span >
< span class = "sd" > applies the same operation to all images in a tracklet to keep consistency.< / span >
2019-03-25 01:22:43 +08:00
< span class = "sd" > " " " < / span >
2019-07-03 20:46:28 +08:00
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > root< / span > < span class = "o" > =< / span > < span class = "s1" > ' ' < / span > < span class = "p" > ,< / span > < span class = "n" > sources< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "n" > height< / span > < span class = "o" > =< / span > < span class = "mi" > 256< / span > < span class = "p" > ,< / span > < span class = "n" > width< / span > < span class = "o" > =< / span > < span class = "mi" > 128< / span > < span class = "p" > ,< / span > < span class = "n" > transforms< / span > < span class = "o" > =< / span > < span class = "s1" > ' random_flip' < / span > < span class = "p" > ,< / span >
< span class = "n" > use_cpu< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > split_id< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > ,< / span > < span class = "n" > combineall< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
2019-03-25 01:22:43 +08:00
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "mi" > 3< / span > < span class = "p" > ,< / span > < span class = "n" > workers< / span > < span class = "o" > =< / span > < span class = "mi" > 4< / span > < span class = "p" > ,< / span > < span class = "n" > num_instances< / span > < span class = "o" > =< / span > < span class = "mi" > 4< / span > < span class = "p" > ,< / span > < span class = "n" > train_sampler< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span >
< span class = "n" > seq_len< / span > < span class = "o" > =< / span > < span class = "mi" > 15< / span > < span class = "p" > ,< / span > < span class = "n" > sample_method< / span > < span class = "o" > =< / span > < span class = "s1" > ' evenly' < / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > VideoDataManager< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > (< / span > < span class = "n" > sources< / span > < span class = "o" > =< / span > < span class = "n" > sources< / span > < span class = "p" > ,< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "n" > targets< / span > < span class = "p" > ,< / span > < span class = "n" > height< / span > < span class = "o" > =< / span > < span class = "n" > height< / span > < span class = "p" > ,< / span > < span class = "n" > width< / span > < span class = "o" > =< / span > < span class = "n" > width< / span > < span class = "p" > ,< / span >
2019-07-04 18:16:41 +08:00
< span class = "n" > transforms< / span > < span class = "o" > =< / span > < span class = "n" > transforms< / span > < span class = "p" > ,< / span > < span class = "n" > use_cpu< / span > < span class = "o" > =< / span > < span class = "n" > use_cpu< / span > < span class = "p" > )< / span >
2019-03-25 01:22:43 +08:00
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' => Loading train (source) dataset' < / span > < span class = "p" > )< / span >
< span class = "n" > trainset< / span > < span class = "o" > =< / span > < span class = "p" > []< / span >
< span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "p" > :< / span >
< span class = "n" > trainset_< / span > < span class = "o" > =< / span > < span class = "n" > init_video_dataset< / span > < span class = "p" > (< / span >
< span class = "n" > name< / span > < span class = "p" > ,< / span >
< span class = "n" > transform< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > transform_tr< / span > < span class = "p" > ,< / span >
< span class = "n" > mode< / span > < span class = "o" > =< / span > < span class = "s1" > ' train' < / span > < span class = "p" > ,< / span >
< span class = "n" > combineall< / span > < span class = "o" > =< / span > < span class = "n" > combineall< / span > < span class = "p" > ,< / span >
< span class = "n" > root< / span > < span class = "o" > =< / span > < span class = "n" > root< / span > < span class = "p" > ,< / span >
< span class = "n" > split_id< / span > < span class = "o" > =< / span > < span class = "n" > split_id< / span > < span class = "p" > ,< / span >
< span class = "n" > seq_len< / span > < span class = "o" > =< / span > < span class = "n" > seq_len< / span > < span class = "p" > ,< / span >
< span class = "n" > sample_method< / span > < span class = "o" > =< / span > < span class = "n" > sample_method< / span >
< span class = "p" > )< / span >
< span class = "n" > trainset< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > trainset_< / span > < span class = "p" > )< / span >
< span class = "n" > trainset< / span > < span class = "o" > =< / span > < span class = "nb" > sum< / span > < span class = "p" > (< / span > < span class = "n" > trainset< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _num_train_pids< / span > < span class = "o" > =< / span > < span class = "n" > trainset< / span > < span class = "o" > .< / span > < span class = "n" > num_train_pids< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _num_train_cams< / span > < span class = "o" > =< / span > < span class = "n" > trainset< / span > < span class = "o" > .< / span > < span class = "n" > num_train_cams< / span >
< span class = "n" > train_sampler< / span > < span class = "o" > =< / span > < span class = "n" > build_train_sampler< / span > < span class = "p" > (< / span >
< span class = "n" > trainset< / span > < span class = "o" > .< / span > < span class = "n" > train< / span > < span class = "p" > ,< / span > < span class = "n" > train_sampler< / span > < span class = "p" > ,< / span >
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "n" > batch_size< / span > < span class = "p" > ,< / span >
< span class = "n" > num_instances< / span > < span class = "o" > =< / span > < span class = "n" > num_instances< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > trainloader< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > utils< / span > < span class = "o" > .< / span > < span class = "n" > data< / span > < span class = "o" > .< / span > < span class = "n" > DataLoader< / span > < span class = "p" > (< / span >
< span class = "n" > trainset< / span > < span class = "p" > ,< / span >
< span class = "n" > sampler< / span > < span class = "o" > =< / span > < span class = "n" > train_sampler< / span > < span class = "p" > ,< / span >
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "n" > batch_size< / span > < span class = "p" > ,< / span >
< span class = "n" > shuffle< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > num_workers< / span > < span class = "o" > =< / span > < span class = "n" > workers< / span > < span class = "p" > ,< / span >
< span class = "n" > pin_memory< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "p" > ,< / span >
< span class = "n" > drop_last< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span >
< span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' => Loading test (target) dataset' < / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testloader< / span > < span class = "o" > =< / span > < span class = "p" > {< / span > < span class = "n" > name< / span > < span class = "p" > :< / span > < span class = "p" > {< / span > < span class = "s1" > ' query' < / span > < span class = "p" > :< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > :< / span > < span class = "kc" > None< / span > < span class = "p" > }< / span > < span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > }< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testdataset< / span > < span class = "o" > =< / span > < span class = "p" > {< / span > < span class = "n" > name< / span > < span class = "p" > :< / span > < span class = "p" > {< / span > < span class = "s1" > ' query' < / span > < span class = "p" > :< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > :< / span > < span class = "kc" > None< / span > < span class = "p" > }< / span > < span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > }< / span >
< span class = "k" > for< / span > < span class = "n" > name< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > :< / span >
< span class = "c1" > # build query loader< / span >
< span class = "n" > queryset< / span > < span class = "o" > =< / span > < span class = "n" > init_video_dataset< / span > < span class = "p" > (< / span >
< span class = "n" > name< / span > < span class = "p" > ,< / span >
< span class = "n" > transform< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > transform_te< / span > < span class = "p" > ,< / span >
< span class = "n" > mode< / span > < span class = "o" > =< / span > < span class = "s1" > ' query' < / span > < span class = "p" > ,< / span >
< span class = "n" > combineall< / span > < span class = "o" > =< / span > < span class = "n" > combineall< / span > < span class = "p" > ,< / span >
< span class = "n" > root< / span > < span class = "o" > =< / span > < span class = "n" > root< / span > < span class = "p" > ,< / span >
< span class = "n" > split_id< / span > < span class = "o" > =< / span > < span class = "n" > split_id< / span > < span class = "p" > ,< / span >
< span class = "n" > seq_len< / span > < span class = "o" > =< / span > < span class = "n" > seq_len< / span > < span class = "p" > ,< / span >
< span class = "n" > sample_method< / span > < span class = "o" > =< / span > < span class = "n" > sample_method< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testloader< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' query' < / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > utils< / span > < span class = "o" > .< / span > < span class = "n" > data< / span > < span class = "o" > .< / span > < span class = "n" > DataLoader< / span > < span class = "p" > (< / span >
< span class = "n" > queryset< / span > < span class = "p" > ,< / span >
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "n" > batch_size< / span > < span class = "p" > ,< / span >
< span class = "n" > shuffle< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > num_workers< / span > < span class = "o" > =< / span > < span class = "n" > workers< / span > < span class = "p" > ,< / span >
< span class = "n" > pin_memory< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "p" > ,< / span >
< span class = "n" > drop_last< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span >
< span class = "p" > )< / span >
< span class = "c1" > # build gallery loader< / span >
< span class = "n" > galleryset< / span > < span class = "o" > =< / span > < span class = "n" > init_video_dataset< / span > < span class = "p" > (< / span >
< span class = "n" > name< / span > < span class = "p" > ,< / span >
< span class = "n" > transform< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > transform_te< / span > < span class = "p" > ,< / span >
< span class = "n" > mode< / span > < span class = "o" > =< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > ,< / span >
< span class = "n" > combineall< / span > < span class = "o" > =< / span > < span class = "n" > combineall< / span > < span class = "p" > ,< / span >
< span class = "n" > verbose< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > root< / span > < span class = "o" > =< / span > < span class = "n" > root< / span > < span class = "p" > ,< / span >
< span class = "n" > split_id< / span > < span class = "o" > =< / span > < span class = "n" > split_id< / span > < span class = "p" > ,< / span >
< span class = "n" > seq_len< / span > < span class = "o" > =< / span > < span class = "n" > seq_len< / span > < span class = "p" > ,< / span >
< span class = "n" > sample_method< / span > < span class = "o" > =< / span > < span class = "n" > sample_method< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testloader< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > utils< / span > < span class = "o" > .< / span > < span class = "n" > data< / span > < span class = "o" > .< / span > < span class = "n" > DataLoader< / span > < span class = "p" > (< / span >
< span class = "n" > galleryset< / span > < span class = "p" > ,< / span >
< span class = "n" > batch_size< / span > < span class = "o" > =< / span > < span class = "n" > batch_size< / span > < span class = "p" > ,< / span >
< span class = "n" > shuffle< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > num_workers< / span > < span class = "o" > =< / span > < span class = "n" > workers< / span > < span class = "p" > ,< / span >
< span class = "n" > pin_memory< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "p" > ,< / span >
< span class = "n" > drop_last< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testdataset< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' query' < / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > queryset< / span > < span class = "o" > .< / span > < span class = "n" > query< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > testdataset< / span > < span class = "p" > [< / span > < span class = "n" > name< / span > < span class = "p" > ][< / span > < span class = "s1" > ' gallery' < / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > galleryset< / span > < span class = "o" > .< / span > < span class = "n" > gallery< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' < / span > < span class = "se" > \n< / span > < span class = "s1" > ' < / span > < span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' **************** Summary ****************' < / span > < span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' train : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "p" > ))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' # train datasets : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > sources< / span > < span class = "p" > )))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' # train ids : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > num_train_pids< / span > < span class = "p" > ))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' # train tracklets : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "n" > trainset< / span > < span class = "p" > )))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' # train cameras : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > num_train_cams< / span > < span class = "p" > ))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' test : < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > targets< / span > < span class = "p" > ))< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' *****************************************' < / span > < span class = "p" > )< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' < / span > < span class = "se" > \n< / span > < span class = "s1" > ' < / span > < span class = "p" > )< / span > < / div >
< / pre > < / div >
< / div >
< / div >
< footer >
< hr / >
< div role = "contentinfo" >
< p >
© Copyright 2019, Kaiyang Zhou
< / p >
< / div >
Built with < a href = "http://sphinx-doc.org/" > Sphinx< / a > using a < a href = "https://github.com/rtfd/sphinx_rtd_theme" > theme< / a > provided by < a href = "https://readthedocs.org" > Read the Docs< / a > .
< / footer >
< / div >
< / div >
< / section >
< / div >
< script type = "text/javascript" >
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
< / script >
< / body >
< / html >