deep-person-reid/_modules/torchreid/data/datamanager.html

575 lines
55 KiB
HTML
Raw Normal View History

2019-03-25 01:22:43 +08:00
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
2019-07-08 22:49:21 +08:00
<title>torchreid.data.datamanager &mdash; torchreid 0.8.1 documentation</title>
2019-03-25 01:22:43 +08:00
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> torchreid
</a>
<div class="version">
2019-07-08 22:49:21 +08:00
0.8.1
2019-03-25 01:22:43 +08:00
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/models.html">torchreid.models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html">Docs</a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>torchreid.data.datamanager</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for torchreid.data.datamanager</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">absolute_import</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">print_function</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">division</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">from</span> <span class="nn">torchreid.data.sampler</span> <span class="k">import</span> <span class="n">build_train_sampler</span>
<span class="kn">from</span> <span class="nn">torchreid.data.transforms</span> <span class="k">import</span> <span class="n">build_transforms</span>
<span class="kn">from</span> <span class="nn">torchreid.data.datasets</span> <span class="k">import</span> <span class="n">init_image_dataset</span><span class="p">,</span> <span class="n">init_video_dataset</span>
<div class="viewcode-block" id="DataManager"><a class="viewcode-back" href="../../../pkg/data.html#torchreid.data.datamanager.DataManager">[docs]</a><span class="k">class</span> <span class="nc">DataManager</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
2019-07-03 20:46:28 +08:00
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Base data manager.</span>
2019-03-25 01:22:43 +08:00
<span class="sd"> Args:</span>
<span class="sd"> sources (str or list): source dataset(s).</span>
<span class="sd"> targets (str or list, optional): target dataset(s). If not given,</span>
<span class="sd"> it equals to ``sources``.</span>
<span class="sd"> height (int, optional): target image height. Default is 256.</span>
<span class="sd"> width (int, optional): target image width. Default is 128.</span>
2019-07-03 20:46:28 +08:00
<span class="sd"> transforms (str or list of str, optional): transformations applied to model training.</span>
<span class="sd"> Default is &#39;random_flip&#39;.</span>
2019-03-25 01:22:43 +08:00
<span class="sd"> use_cpu (bool, optional): use cpu. Default is False.</span>
<span class="sd"> &quot;&quot;&quot;</span>
2019-07-03 20:46:28 +08:00
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sources</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">targets</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">height</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">transforms</span><span class="o">=</span><span class="s1">&#39;random_flip&#39;</span><span class="p">,</span>
<span class="n">use_cpu</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
2019-03-25 01:22:43 +08:00
<span class="bp">self</span><span class="o">.</span><span class="n">sources</span> <span class="o">=</span> <span class="n">sources</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="n">targets</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">sources</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;sources must not be None&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sources</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sources</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">sources</span><span class="p">]</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sources</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transform_tr</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform_te</span> <span class="o">=</span> <span class="n">build_transforms</span><span class="p">(</span>
2019-07-03 20:46:28 +08:00
<span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">,</span> <span class="n">transforms</span>
2019-03-25 01:22:43 +08:00
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span> <span class="o">=</span> <span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">use_cpu</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">num_train_pids</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Returns the number of training person identities.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_num_train_pids</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">num_train_cams</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Returns the number of training cameras.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_num_train_cams</span>
<div class="viewcode-block" id="DataManager.return_dataloaders"><a class="viewcode-back" href="../../../pkg/data.html#torchreid.data.datamanager.DataManager.return_dataloaders">[docs]</a> <span class="k">def</span> <span class="nf">return_dataloaders</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Returns trainloader and testloader.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">trainloader</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">testloader</span></div>
<div class="viewcode-block" id="DataManager.return_testdataset_by_name"><a class="viewcode-back" href="../../../pkg/data.html#torchreid.data.datamanager.DataManager.return_testdataset_by_name">[docs]</a> <span class="k">def</span> <span class="nf">return_testdataset_by_name</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Returns query and gallery of a test dataset, each containing</span>
<span class="sd"> tuples of (img_path(s), pid, camid).</span>
<span class="sd"> Args:</span>
<span class="sd"> name (str): dataset name.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">testdataset</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;query&#39;</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">testdataset</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;gallery&#39;</span><span class="p">]</span></div></div>
<div class="viewcode-block" id="ImageDataManager"><a class="viewcode-back" href="../../../pkg/data.html#torchreid.data.datamanager.ImageDataManager">[docs]</a><span class="k">class</span> <span class="nc">ImageDataManager</span><span class="p">(</span><span class="n">DataManager</span><span class="p">):</span>
2019-07-03 20:46:28 +08:00
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Image data manager.</span>
2019-03-25 01:22:43 +08:00
<span class="sd"> Args:</span>
<span class="sd"> root (str): root path to datasets.</span>
<span class="sd"> sources (str or list): source dataset(s).</span>
<span class="sd"> targets (str or list, optional): target dataset(s). If not given,</span>
<span class="sd"> it equals to ``sources``.</span>
<span class="sd"> height (int, optional): target image height. Default is 256.</span>
<span class="sd"> width (int, optional): target image width. Default is 128.</span>
2019-07-03 20:46:28 +08:00
<span class="sd"> transforms (str or list of str, optional): transformations applied to model training.</span>
<span class="sd"> Default is &#39;random_flip&#39;.</span>
2019-03-25 01:22:43 +08:00
<span class="sd"> use_cpu (bool, optional): use cpu. Default is False.</span>
<span class="sd"> split_id (int, optional): split id (*0-based*). Default is 0.</span>
<span class="sd"> combineall (bool, optional): combine train, query and gallery in a dataset for</span>
<span class="sd"> training. Default is False.</span>
<span class="sd"> batch_size (int, optional): number of images in a batch. Default is 32.</span>
<span class="sd"> workers (int, optional): number of workers. Default is 4.</span>
<span class="sd"> num_instances (int, optional): number of instances per identity in a batch.</span>
<span class="sd"> Default is 4.</span>
<span class="sd"> train_sampler (str, optional): sampler. Default is empty (``RandomSampler``).</span>
<span class="sd"> cuhk03_labeled (bool, optional): use cuhk03 labeled images.</span>
<span class="sd"> Default is False (defaul is to use detected images).</span>
<span class="sd"> cuhk03_classic_split (bool, optional): use the classic split in cuhk03.</span>
<span class="sd"> Default is False.</span>
<span class="sd"> market1501_500k (bool, optional): add 500K distractors to the gallery</span>
<span class="sd"> set in market1501. Default is False.</span>
<span class="sd"> Examples::</span>
<span class="sd"> datamanager = torchreid.data.ImageDataManager(</span>
<span class="sd"> root=&#39;path/to/reid-data&#39;,</span>
<span class="sd"> sources=&#39;market1501&#39;,</span>
<span class="sd"> height=256,</span>
<span class="sd"> width=128,</span>
<span class="sd"> batch_size=32</span>
<span class="sd"> )</span>
<span class="sd"> &quot;&quot;&quot;</span>
2019-07-03 20:46:28 +08:00
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">root</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span> <span class="n">sources</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">targets</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">height</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">transforms</span><span class="o">=</span><span class="s1">&#39;random_flip&#39;</span><span class="p">,</span>
<span class="n">use_cpu</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">split_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">combineall</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
2019-03-25 01:22:43 +08:00
<span class="n">batch_size</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span> <span class="n">workers</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">num_instances</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">train_sampler</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span>
<span class="n">cuhk03_labeled</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">cuhk03_classic_split</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">market1501_500k</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ImageDataManager</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">sources</span><span class="o">=</span><span class="n">sources</span><span class="p">,</span> <span class="n">targets</span><span class="o">=</span><span class="n">targets</span><span class="p">,</span> <span class="n">height</span><span class="o">=</span><span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="n">width</span><span class="p">,</span>
2019-07-03 20:46:28 +08:00
<span class="n">transforms</span><span class="o">=</span><span class="n">transforms</span><span class="p">,</span> <span class="n">use_cpu</span><span class="o">=</span><span class="n">use_cpu</span><span class="p">)</span>
2019-03-25 07:34:37 +08:00
2019-03-25 01:22:43 +08:00
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;=&gt; Loading train (source) dataset&#39;</span><span class="p">)</span>
<span class="n">trainset</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">sources</span><span class="p">:</span>
<span class="n">trainset_</span> <span class="o">=</span> <span class="n">init_image_dataset</span><span class="p">(</span>
<span class="n">name</span><span class="p">,</span>
<span class="n">transform</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">transform_tr</span><span class="p">,</span>
<span class="n">mode</span><span class="o">=</span><span class="s1">&#39;train&#39;</span><span class="p">,</span>
<span class="n">combineall</span><span class="o">=</span><span class="n">combineall</span><span class="p">,</span>
<span class="n">root</span><span class="o">=</span><span class="n">root</span><span class="p">,</span>
<span class="n">split_id</span><span class="o">=</span><span class="n">split_id</span><span class="p">,</span>
<span class="n">cuhk03_labeled</span><span class="o">=</span><span class="n">cuhk03_labeled</span><span class="p">,</span>
<span class="n">cuhk03_classic_split</span><span class="o">=</span><span class="n">cuhk03_classic_split</span><span class="p">,</span>
<span class="n">market1501_500k</span><span class="o">=</span><span class="n">market1501_500k</span>
<span class="p">)</span>
<span class="n">trainset</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">trainset_</span><span class="p">)</span>
<span class="n">trainset</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">trainset</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_num_train_pids</span> <span class="o">=</span> <span class="n">trainset</span><span class="o">.</span><span class="n">num_train_pids</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_num_train_cams</span> <span class="o">=</span> <span class="n">trainset</span><span class="o">.</span><span class="n">num_train_cams</span>
<span class="n">train_sampler</span> <span class="o">=</span> <span class="n">build_train_sampler</span><span class="p">(</span>
<span class="n">trainset</span><span class="o">.</span><span class="n">train</span><span class="p">,</span> <span class="n">train_sampler</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">num_instances</span><span class="o">=</span><span class="n">num_instances</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">trainloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span>
<span class="n">trainset</span><span class="p">,</span>
<span class="n">sampler</span><span class="o">=</span><span class="n">train_sampler</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">num_workers</span><span class="o">=</span><span class="n">workers</span><span class="p">,</span>
<span class="n">pin_memory</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">,</span>
<span class="n">drop_last</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;=&gt; Loading test (target) dataset&#39;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testloader</span> <span class="o">=</span> <span class="p">{</span><span class="n">name</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;query&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">,</span> <span class="s1">&#39;gallery&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">}</span> <span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">}</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testdataset</span> <span class="o">=</span> <span class="p">{</span><span class="n">name</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;query&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">,</span> <span class="s1">&#39;gallery&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">}</span> <span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">}</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">:</span>
<span class="c1"># build query loader</span>
<span class="n">queryset</span> <span class="o">=</span> <span class="n">init_image_dataset</span><span class="p">(</span>
<span class="n">name</span><span class="p">,</span>
<span class="n">transform</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">transform_te</span><span class="p">,</span>
<span class="n">mode</span><span class="o">=</span><span class="s1">&#39;query&#39;</span><span class="p">,</span>
<span class="n">combineall</span><span class="o">=</span><span class="n">combineall</span><span class="p">,</span>
<span class="n">root</span><span class="o">=</span><span class="n">root</span><span class="p">,</span>
<span class="n">split_id</span><span class="o">=</span><span class="n">split_id</span><span class="p">,</span>
<span class="n">cuhk03_labeled</span><span class="o">=</span><span class="n">cuhk03_labeled</span><span class="p">,</span>
<span class="n">cuhk03_classic_split</span><span class="o">=</span><span class="n">cuhk03_classic_split</span><span class="p">,</span>
<span class="n">market1501_500k</span><span class="o">=</span><span class="n">market1501_500k</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testloader</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;query&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span>
<span class="n">queryset</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">num_workers</span><span class="o">=</span><span class="n">workers</span><span class="p">,</span>
<span class="n">pin_memory</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">,</span>
<span class="n">drop_last</span><span class="o">=</span><span class="kc">False</span>
<span class="p">)</span>
<span class="c1"># build gallery loader</span>
<span class="n">galleryset</span> <span class="o">=</span> <span class="n">init_image_dataset</span><span class="p">(</span>
<span class="n">name</span><span class="p">,</span>
<span class="n">transform</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">transform_te</span><span class="p">,</span>
<span class="n">mode</span><span class="o">=</span><span class="s1">&#39;gallery&#39;</span><span class="p">,</span>
<span class="n">combineall</span><span class="o">=</span><span class="n">combineall</span><span class="p">,</span>
<span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">root</span><span class="o">=</span><span class="n">root</span><span class="p">,</span>
<span class="n">split_id</span><span class="o">=</span><span class="n">split_id</span><span class="p">,</span>
<span class="n">cuhk03_labeled</span><span class="o">=</span><span class="n">cuhk03_labeled</span><span class="p">,</span>
<span class="n">cuhk03_classic_split</span><span class="o">=</span><span class="n">cuhk03_classic_split</span><span class="p">,</span>
<span class="n">market1501_500k</span><span class="o">=</span><span class="n">market1501_500k</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testloader</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;gallery&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span>
<span class="n">galleryset</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">num_workers</span><span class="o">=</span><span class="n">workers</span><span class="p">,</span>
<span class="n">pin_memory</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">,</span>
<span class="n">drop_last</span><span class="o">=</span><span class="kc">False</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testdataset</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;query&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">queryset</span><span class="o">.</span><span class="n">query</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testdataset</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;gallery&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">galleryset</span><span class="o">.</span><span class="n">gallery</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; **************** Summary ****************&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; train : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sources</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; # train datasets : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sources</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; # train ids : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_train_pids</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; # train images : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">trainset</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; # train cameras : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_train_cams</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; test : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; *****************************************&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="VideoDataManager"><a class="viewcode-back" href="../../../pkg/data.html#torchreid.data.datamanager.VideoDataManager">[docs]</a><span class="k">class</span> <span class="nc">VideoDataManager</span><span class="p">(</span><span class="n">DataManager</span><span class="p">):</span>
2019-07-03 20:46:28 +08:00
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Video data manager.</span>
2019-03-25 01:22:43 +08:00
<span class="sd"> Args:</span>
<span class="sd"> root (str): root path to datasets.</span>
<span class="sd"> sources (str or list): source dataset(s).</span>
<span class="sd"> targets (str or list, optional): target dataset(s). If not given,</span>
<span class="sd"> it equals to ``sources``.</span>
<span class="sd"> height (int, optional): target image height. Default is 256.</span>
<span class="sd"> width (int, optional): target image width. Default is 128.</span>
2019-07-03 20:46:28 +08:00
<span class="sd"> transforms (str or list of str, optional): transformations applied to model training.</span>
<span class="sd"> Default is &#39;random_flip&#39;.</span>
2019-03-25 01:22:43 +08:00
<span class="sd"> use_cpu (bool, optional): use cpu. Default is False.</span>
<span class="sd"> split_id (int, optional): split id (*0-based*). Default is 0.</span>
<span class="sd"> combineall (bool, optional): combine train, query and gallery in a dataset for</span>
<span class="sd"> training. Default is False.</span>
<span class="sd"> batch_size (int, optional): number of *tracklets* in a batch. Default is 3.</span>
<span class="sd"> workers (int, optional): number of workers. Default is 4.</span>
<span class="sd"> num_instances (int, optional): number of instances per identity in a batch.</span>
<span class="sd"> Default is 4.</span>
<span class="sd"> train_sampler (str, optional): sampler. Default is empty (``RandomSampler``).</span>
<span class="sd"> seq_len (int, optional): how many images to sample in a tracklet. Default is 15.</span>
<span class="sd"> sample_method (str, optional): how to sample images in a tracklet. Default is &quot;evenly&quot;.</span>
<span class="sd"> Choices are [&quot;evenly&quot;, &quot;random&quot;, &quot;all&quot;]. &quot;evenly&quot; and &quot;random&quot; sample ``seq_len``</span>
<span class="sd"> images in a tracklet while &quot;all&quot; samples all images in a tracklet, thus ``batch_size``</span>
<span class="sd"> needs to be set to 1.</span>
<span class="sd"> Examples::</span>
<span class="sd"> datamanager = torchreid.data.VideoDataManager(</span>
<span class="sd"> root=&#39;path/to/reid-data&#39;,</span>
<span class="sd"> sources=&#39;mars&#39;,</span>
<span class="sd"> height=256,</span>
<span class="sd"> width=128,</span>
<span class="sd"> batch_size=3,</span>
<span class="sd"> seq_len=15,</span>
<span class="sd"> sample_method=&#39;evenly&#39;</span>
<span class="sd"> )</span>
2019-07-03 22:55:04 +08:00
<span class="sd"> .. note::</span>
<span class="sd"> The current implementation only supports image-like training. Therefore, each image in a</span>
<span class="sd"> sampled tracklet will undergo independent transformation functions. To achieve tracklet-aware</span>
<span class="sd"> training, you need to modify the transformation functions for video reid such that each function</span>
<span class="sd"> applies the same operation to all images in a tracklet to keep consistency.</span>
2019-03-25 01:22:43 +08:00
<span class="sd"> &quot;&quot;&quot;</span>
2019-07-03 20:46:28 +08:00
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">root</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span> <span class="n">sources</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">targets</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">height</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">transforms</span><span class="o">=</span><span class="s1">&#39;random_flip&#39;</span><span class="p">,</span>
<span class="n">use_cpu</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">split_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">combineall</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
2019-03-25 01:22:43 +08:00
<span class="n">batch_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">workers</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">num_instances</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">train_sampler</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">seq_len</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span> <span class="n">sample_method</span><span class="o">=</span><span class="s1">&#39;evenly&#39;</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">VideoDataManager</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">sources</span><span class="o">=</span><span class="n">sources</span><span class="p">,</span> <span class="n">targets</span><span class="o">=</span><span class="n">targets</span><span class="p">,</span> <span class="n">height</span><span class="o">=</span><span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="n">width</span><span class="p">,</span>
<span class="n">transforms</span><span class="o">=</span><span class="n">transforms</span><span class="p">,</span> <span class="n">use_cpu</span><span class="o">=</span><span class="n">use_cpu</span><span class="p">)</span>
2019-03-25 01:22:43 +08:00
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;=&gt; Loading train (source) dataset&#39;</span><span class="p">)</span>
<span class="n">trainset</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">sources</span><span class="p">:</span>
<span class="n">trainset_</span> <span class="o">=</span> <span class="n">init_video_dataset</span><span class="p">(</span>
<span class="n">name</span><span class="p">,</span>
<span class="n">transform</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">transform_tr</span><span class="p">,</span>
<span class="n">mode</span><span class="o">=</span><span class="s1">&#39;train&#39;</span><span class="p">,</span>
<span class="n">combineall</span><span class="o">=</span><span class="n">combineall</span><span class="p">,</span>
<span class="n">root</span><span class="o">=</span><span class="n">root</span><span class="p">,</span>
<span class="n">split_id</span><span class="o">=</span><span class="n">split_id</span><span class="p">,</span>
<span class="n">seq_len</span><span class="o">=</span><span class="n">seq_len</span><span class="p">,</span>
<span class="n">sample_method</span><span class="o">=</span><span class="n">sample_method</span>
<span class="p">)</span>
<span class="n">trainset</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">trainset_</span><span class="p">)</span>
<span class="n">trainset</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">trainset</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_num_train_pids</span> <span class="o">=</span> <span class="n">trainset</span><span class="o">.</span><span class="n">num_train_pids</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_num_train_cams</span> <span class="o">=</span> <span class="n">trainset</span><span class="o">.</span><span class="n">num_train_cams</span>
<span class="n">train_sampler</span> <span class="o">=</span> <span class="n">build_train_sampler</span><span class="p">(</span>
<span class="n">trainset</span><span class="o">.</span><span class="n">train</span><span class="p">,</span> <span class="n">train_sampler</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">num_instances</span><span class="o">=</span><span class="n">num_instances</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">trainloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span>
<span class="n">trainset</span><span class="p">,</span>
<span class="n">sampler</span><span class="o">=</span><span class="n">train_sampler</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">num_workers</span><span class="o">=</span><span class="n">workers</span><span class="p">,</span>
<span class="n">pin_memory</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">,</span>
<span class="n">drop_last</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;=&gt; Loading test (target) dataset&#39;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testloader</span> <span class="o">=</span> <span class="p">{</span><span class="n">name</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;query&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">,</span> <span class="s1">&#39;gallery&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">}</span> <span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">}</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testdataset</span> <span class="o">=</span> <span class="p">{</span><span class="n">name</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;query&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">,</span> <span class="s1">&#39;gallery&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">}</span> <span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">}</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">:</span>
<span class="c1"># build query loader</span>
<span class="n">queryset</span> <span class="o">=</span> <span class="n">init_video_dataset</span><span class="p">(</span>
<span class="n">name</span><span class="p">,</span>
<span class="n">transform</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">transform_te</span><span class="p">,</span>
<span class="n">mode</span><span class="o">=</span><span class="s1">&#39;query&#39;</span><span class="p">,</span>
<span class="n">combineall</span><span class="o">=</span><span class="n">combineall</span><span class="p">,</span>
<span class="n">root</span><span class="o">=</span><span class="n">root</span><span class="p">,</span>
<span class="n">split_id</span><span class="o">=</span><span class="n">split_id</span><span class="p">,</span>
<span class="n">seq_len</span><span class="o">=</span><span class="n">seq_len</span><span class="p">,</span>
<span class="n">sample_method</span><span class="o">=</span><span class="n">sample_method</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testloader</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;query&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span>
<span class="n">queryset</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">num_workers</span><span class="o">=</span><span class="n">workers</span><span class="p">,</span>
<span class="n">pin_memory</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">,</span>
<span class="n">drop_last</span><span class="o">=</span><span class="kc">False</span>
<span class="p">)</span>
<span class="c1"># build gallery loader</span>
<span class="n">galleryset</span> <span class="o">=</span> <span class="n">init_video_dataset</span><span class="p">(</span>
<span class="n">name</span><span class="p">,</span>
<span class="n">transform</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">transform_te</span><span class="p">,</span>
<span class="n">mode</span><span class="o">=</span><span class="s1">&#39;gallery&#39;</span><span class="p">,</span>
<span class="n">combineall</span><span class="o">=</span><span class="n">combineall</span><span class="p">,</span>
<span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">root</span><span class="o">=</span><span class="n">root</span><span class="p">,</span>
<span class="n">split_id</span><span class="o">=</span><span class="n">split_id</span><span class="p">,</span>
<span class="n">seq_len</span><span class="o">=</span><span class="n">seq_len</span><span class="p">,</span>
<span class="n">sample_method</span><span class="o">=</span><span class="n">sample_method</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testloader</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;gallery&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span>
<span class="n">galleryset</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">num_workers</span><span class="o">=</span><span class="n">workers</span><span class="p">,</span>
<span class="n">pin_memory</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">,</span>
<span class="n">drop_last</span><span class="o">=</span><span class="kc">False</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testdataset</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;query&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">queryset</span><span class="o">.</span><span class="n">query</span>
<span class="bp">self</span><span class="o">.</span><span class="n">testdataset</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;gallery&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">galleryset</span><span class="o">.</span><span class="n">gallery</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; **************** Summary ****************&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; train : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sources</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; # train datasets : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sources</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; # train ids : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_train_pids</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; # train tracklets : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">trainset</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; # train cameras : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_train_cams</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; test : </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39; *****************************************&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>