deep-person-reid/train_imgreid_xent_htri.py

329 lines
13 KiB
Python
Raw Normal View History

2018-07-02 17:17:14 +08:00
from __future__ import print_function, absolute_import, division
2018-03-12 21:53:08 +08:00
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import data_manager
from dataset_loader import ImageDataset
import transforms as T
import models
2018-04-27 01:00:03 +08:00
from losses import CrossEntropyLabelSmooth, TripletLoss, DeepSupervision
2018-07-02 17:17:14 +08:00
from utils.iotools import save_checkpoint
from utils.avgmeter import AverageMeter
from utils.logger import Logger
2018-03-12 21:53:08 +08:00
from eval_metrics import evaluate
2018-07-02 18:56:30 +08:00
from samplers import RandomIdentitySampler
2018-04-27 16:51:04 +08:00
from optimizers import init_optim
2018-03-12 21:53:08 +08:00
parser = argparse.ArgumentParser(description='Train image model with cross entropy loss and hard triplet loss')
# Datasets
2018-05-02 22:59:06 +08:00
parser.add_argument('--root', type=str, default='data', help="root path to data directory")
2018-03-12 21:53:08 +08:00
parser.add_argument('-d', '--dataset', type=str, default='market1501',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=256,
help="height of an image (default: 256)")
parser.add_argument('--width', type=int, default=128,
help="width of an image (default: 128)")
2018-04-23 03:48:40 +08:00
parser.add_argument('--split-id', type=int, default=0, help="split index")
2018-07-02 19:55:28 +08:00
parser.add_argument('--use-lmdb', action='store_true', help="whether to use lmdb dataset")
2018-04-23 23:08:24 +08:00
# CUHK03-specific setting
2018-04-23 03:48:40 +08:00
parser.add_argument('--cuhk03-labeled', action='store_true',
help="whether to use labeled images, if false, detected images are used (default: False)")
2018-04-23 22:58:51 +08:00
parser.add_argument('--cuhk03-classic-split', action='store_true',
help="whether to use classic split by Li et al. CVPR'14 (default: False)")
2018-04-23 19:57:50 +08:00
parser.add_argument('--use-metric-cuhk03', action='store_true',
help="whether to use cuhk03-metric (default: False)")
2018-03-12 21:53:08 +08:00
# Optimization options
2018-04-27 16:51:04 +08:00
parser.add_argument('--optim', type=str, default='adam', help="optimization algorithm (see optimizers.py)")
2018-07-02 18:56:30 +08:00
parser.add_argument('--max-epoch', default=60, type=int,
2018-03-12 21:53:08 +08:00
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
2018-07-02 17:17:14 +08:00
parser.add_argument('--test-batch', default=100, type=int, help="test batch size")
2018-03-12 21:53:08 +08:00
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate")
2018-07-02 17:17:14 +08:00
parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int,
help="stepsize to decay learning rate")
2018-03-12 21:53:08 +08:00
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser.add_argument('--margin', type=float, default=0.3, help="margin for triplet loss")
parser.add_argument('--num-instances', type=int, default=4,
help="number of instances per identity")
2018-03-27 17:51:10 +08:00
parser.add_argument('--htri-only', action='store_true', default=False,
help="if this is True, only htri loss is used in training")
2018-03-12 21:53:08 +08:00
# Architecture
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
# Miscs
parser.add_argument('--print-freq', type=int, default=10, help="print frequency")
parser.add_argument('--seed', type=int, default=1, help="manual seed")
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--evaluate', action='store_true', help="evaluation only")
parser.add_argument('--eval-step', type=int, default=-1,
help="run evaluation for every N epochs (set to -1 to test after training)")
2018-05-23 18:30:00 +08:00
parser.add_argument('--start-eval', type=int, default=0, help="start to evaluate after specific epoch")
2018-03-12 21:53:08 +08:00
parser.add_argument('--save-dir', type=str, default='log')
parser.add_argument('--use-cpu', action='store_true', help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
def main():
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
2018-03-14 20:35:14 +08:00
print("Currently using GPU {}".format(args.gpu_devices))
2018-03-12 21:53:08 +08:00
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
print("Initializing dataset {}".format(args.dataset))
2018-07-02 17:17:14 +08:00
dataset = data_manager.init_imgreid_dataset(
2018-05-02 22:59:06 +08:00
root=args.root, name=args.dataset, split_id=args.split_id,
2018-04-23 22:58:51 +08:00
cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split,
2018-07-02 19:55:28 +08:00
use_lmdb=args.use_lmdb,
2018-04-23 22:58:51 +08:00
)
2018-03-12 21:53:08 +08:00
transform_train = T.Compose([
T.Random2DTranslation(args.height, args.width),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_test = T.Compose([
T.Resize((args.height, args.width)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
pin_memory = True if use_gpu else False
trainloader = DataLoader(
2018-07-02 19:55:28 +08:00
ImageDataset(dataset.train, transform=transform_train,
use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path),
2018-07-02 18:56:30 +08:00
sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances),
2018-03-12 21:53:08 +08:00
batch_size=args.train_batch, num_workers=args.workers,
pin_memory=pin_memory, drop_last=True,
)
queryloader = DataLoader(
2018-07-02 19:55:28 +08:00
ImageDataset(dataset.query, transform=transform_test,
use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path),
2018-03-12 21:53:08 +08:00
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
galleryloader = DataLoader(
2018-07-02 19:55:28 +08:00
ImageDataset(dataset.gallery, transform=transform_test,
use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path),
2018-03-12 21:53:08 +08:00
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'})
print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0))
criterion_xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
criterion_htri = TripletLoss(margin=args.margin)
2018-03-12 22:18:22 +08:00
2018-04-27 16:51:04 +08:00
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
2018-07-02 17:17:14 +08:00
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
2018-03-12 21:53:08 +08:00
start_epoch = args.start_epoch
if args.resume:
print("Loading checkpoint from '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
test(model, queryloader, galleryloader, use_gpu)
return
start_time = time.time()
2018-04-30 18:19:44 +08:00
train_time = 0
2018-03-12 21:53:08 +08:00
best_rank1 = -np.inf
2018-04-27 16:33:12 +08:00
best_epoch = 0
2018-04-27 17:03:24 +08:00
print("==> Start training")
2018-03-12 21:53:08 +08:00
for epoch in range(start_epoch, args.max_epoch):
2018-04-30 18:19:44 +08:00
start_train_time = time.time()
2018-04-27 17:03:24 +08:00
train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
2018-04-30 18:19:44 +08:00
train_time += round(time.time() - start_train_time)
2018-03-12 21:53:08 +08:00
2018-07-02 17:17:14 +08:00
scheduler.step()
2018-03-12 21:53:08 +08:00
2018-05-23 18:30:00 +08:00
if (epoch+1) > args.start_eval and args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch:
2018-03-12 21:53:08 +08:00
print("==> Test")
rank1 = test(model, queryloader, galleryloader, use_gpu)
is_best = rank1 > best_rank1
2018-04-27 16:33:12 +08:00
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
2018-03-12 21:53:08 +08:00
2018-03-28 07:41:49 +08:00
if use_gpu:
2018-03-29 23:45:39 +08:00
state_dict = model.module.state_dict()
2018-03-28 07:41:49 +08:00
else:
state_dict = model.state_dict()
2018-03-12 21:53:08 +08:00
save_checkpoint({
2018-03-28 07:41:49 +08:00
'state_dict': state_dict,
2018-03-12 21:53:08 +08:00
'rank1': rank1,
'epoch': epoch,
}, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar'))
2018-04-27 16:33:12 +08:00
print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))
2018-03-12 21:53:08 +08:00
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
2018-04-30 18:19:44 +08:00
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
2018-03-12 21:53:08 +08:00
2018-04-27 17:03:24 +08:00
def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu):
2018-03-12 21:53:08 +08:00
losses = AverageMeter()
2018-05-23 02:27:09 +08:00
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
2018-03-12 21:53:08 +08:00
2018-05-23 02:27:09 +08:00
end = time.time()
2018-03-12 21:53:08 +08:00
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
2018-05-23 18:42:32 +08:00
# measure data loading time
data_time.update(time.time() - end)
2018-03-12 21:53:08 +08:00
outputs, features = model(imgs)
2018-03-27 17:51:10 +08:00
if args.htri_only:
2018-04-25 00:07:59 +08:00
if isinstance(features, tuple):
2018-04-27 01:00:03 +08:00
loss = DeepSupervision(criterion_htri, features, pids)
2018-04-25 00:07:59 +08:00
else:
loss = criterion_htri(features, pids)
2018-03-27 17:51:10 +08:00
else:
2018-04-27 01:00:03 +08:00
if isinstance(outputs, tuple):
xent_loss = DeepSupervision(criterion_xent, outputs, pids)
else:
xent_loss = criterion_xent(outputs, pids)
2018-04-25 00:07:59 +08:00
if isinstance(features, tuple):
2018-04-27 01:00:03 +08:00
htri_loss = DeepSupervision(criterion_htri, features, pids)
2018-04-25 00:07:59 +08:00
else:
htri_loss = criterion_htri(features, pids)
2018-03-27 17:51:10 +08:00
loss = xent_loss + htri_loss
2018-03-12 21:53:08 +08:00
optimizer.zero_grad()
loss.backward()
optimizer.step()
2018-05-23 02:27:09 +08:00
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
2018-04-26 21:11:43 +08:00
losses.update(loss.item(), pids.size(0))
2018-03-12 21:53:08 +08:00
if (batch_idx+1) % args.print_freq == 0:
2018-05-23 02:27:09 +08:00
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch+1, batch_idx+1, len(trainloader), batch_time=batch_time,
data_time=data_time, loss=losses))
2018-03-12 21:53:08 +08:00
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]):
2018-05-23 02:27:09 +08:00
batch_time = AverageMeter()
2018-03-12 21:53:08 +08:00
model.eval()
2018-04-26 21:11:43 +08:00
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
if use_gpu:
imgs = imgs.cuda()
2018-05-23 02:27:09 +08:00
end = time.time()
2018-04-26 21:11:43 +08:00
features = model(imgs)
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
if use_gpu:
imgs = imgs.cuda()
2018-05-23 02:27:09 +08:00
end = time.time()
2018-04-26 21:11:43 +08:00
features = model(imgs)
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
2018-05-23 02:27:09 +08:00
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch))
2018-03-12 21:53:08 +08:00
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
2018-04-23 19:57:50 +08:00
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, use_metric_cuhk03=args.use_metric_cuhk03)
2018-03-12 21:53:08 +08:00
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
return cmc[0]
if __name__ == '__main__':
2018-04-23 17:21:26 +08:00
main()