Torchreid is a library for deep-learning person re-identification, written in `PyTorch <https://pytorch.org/>`_ and developed for our ICCV'19 project, `Omni-Scale Feature Learning for Person Re-Identification <https://arxiv.org/abs/1905.00953>`_.
- [Aug 2022] We have added model export capabilities to the following frameworks: ONNX, OpenVINO and TFLite. The export script can be found `here <https://github.com/KaiyangZhou/deep-person-reid/blob/master/tools/export.py>`_
- [Aug 2021] We have released the ImageNet-pretrained models of ``osnet_ain_x0_75``, ``osnet_ain_x0_5`` and ``osnet_ain_x0_25``. The pretraining setup follows `pycls <https://github.com/facebookresearch/pycls/blob/master/configs/archive/imagenet/resnet/R-50-1x64d_step_8gpu.yaml>`_.
- [Apr 2021] We have updated the appendix in the `TPAMI version of OSNet <https://arxiv.org/abs/1910.06827v5>`_ to include results in the multi-source domain generalization setting. The trained models can be found in the `Model Zoo <https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html>`_.
- [Apr 2021] We have added a script to automate the process of calculating average results over multiple splits. For more details please see ``tools/parse_test_res.py``.
- [Apr 2021] ``v1.4.0``: We added the person search dataset, `CUHK-SYSU <http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html>`_. Please see the `documentation <https://kaiyangzhou.github.io/deep-person-reid/>`_ regarding how to download the dataset (it contains cropped person images).
- [Apr 2021] All models in the model zoo have been moved to google drive. Please raise an issue if any model's performance is inconsistent with the numbers shown in the model zoo page (could be caused by wrong links).
- [Mar 2021] `OSNet <https://arxiv.org/abs/1910.06827>`_ will appear in the TPAMI journal! Compared with the conference version, which focuses on discriminative feature learning using the omni-scale building block, this journal extension further considers generalizable feature learning by integrating `instance normalization layers <https://arxiv.org/abs/1607.08022>`_ with the OSNet architecture. We hope this journal paper can motivate more future work to taclke the generalization issue in cross-dataset re-ID.
- [Mar 2021] Generalization across domains (datasets) in person re-ID is crucial in real-world applications, which is closely related to the topic of *domain generalization*. Interested in learning how the field of domain generalization has developed over the last decade? Check our recent survey in this topic at https://arxiv.org/abs/2103.02503, with coverage on the history, datasets, related problems, methodologies, potential directions, and so on (*methods designed for generalizable re-ID are also covered*!).
- [Feb 2021] ``v1.3.6`` Added `University-1652 <https://dl.acm.org/doi/abs/10.1145/3394171.3413896>`_, a new dataset for multi-view multi-source geo-localization (credit to `Zhedong Zheng <https://github.com/layumi>`_).
- [Feb 2021] ``v1.3.5``: Now the `cython code <https://github.com/KaiyangZhou/deep-person-reid/pull/412>`_ works on Windows (credit to `lablabla <https://github.com/lablabla>`_).
- [Jan 2021] Our recent work, `MixStyle <https://openreview.net/forum?id=6xHJ37MVxxp>`_ (mixing instance-level feature statistics of samples of different domains for improving domain generalization), has been accepted to ICLR'21. The code has been released at https://github.com/KaiyangZhou/mixstyle-release where the person re-ID part is based on Torchreid.
- [Jan 2021] A new evaluation metric called `mean Inverse Negative Penalty (mINP)` for person re-ID has been introduced in `Deep Learning for Person Re-identification: A Survey and Outlook (TPAMI 2021) <https://arxiv.org/abs/2001.04193>`_. Their code can be accessed at `<https://github.com/mangye16/ReID-Survey>`_.
- [Aug 2020] ``v1.3.3``: Fixed bug in ``visrank`` (caused by not unpacking ``dsetid``).
- [Aug 2020] ``v1.3.2``: Added ``_junk_pids`` to ``grid`` and ``prid``. This avoids using mislabeled gallery images for training when setting ``combineall=True``.
- [Aug 2020] ``v1.3.0``: (1) Added ``dsetid`` to the existing 3-tuple data source, resulting in ``(impath, pid, camid, dsetid)``. This variable denotes the dataset ID and is useful when combining multiple datasets for training (as a dataset indicator). E.g., when combining ``market1501`` and ``cuhk03``, the former will be assigned ``dsetid=0`` while the latter will be assigned ``dsetid=1``. (2) Added ``RandomDatasetSampler``. Analogous to ``RandomDomainSampler``, ``RandomDatasetSampler`` samples a certain number of images (``batch_size // num_datasets``) from each of specified datasets (the amount is determined by ``num_datasets``).
- [Aug 2020] ``v1.2.6``: Added ``RandomDomainSampler`` (it samples ``num_cams`` cameras each with ``batch_size // num_cams`` images to form a mini-batch).
- [Jun 2020] ``v1.2.5``: (1) Dataloader's output from ``__getitem__`` has been changed from ``list`` to ``dict``. Previously, an element, e.g. image tensor, was fetched with ``imgs=data[0]``. Now it should be obtained by ``imgs=data['img']``. See this `commit <https://github.com/KaiyangZhou/deep-person-reid/commit/aefe335d68f39a20160860e6d14c2d34f539b8a5>`_ for detailed changes. (2) Added ``k_tfm`` as an option to image data loader, which allows data augmentation to be applied ``k_tfm`` times *independently* to an image. If ``k_tfm > 1``, ``imgs=data['img']`` returns a list with ``k_tfm`` image tensors.
- [May 2020] Added the person attribute recognition code used in `Omni-Scale Feature Learning for Person Re-Identification (ICCV'19) <https://arxiv.org/abs/1905.00953>`_. See ``projects/attribute_recognition/``.
- [May 2020] ``v1.2.1``: Added a simple API for feature extraction (``torchreid/utils/feature_extractor.py``). See the `documentation <https://kaiyangzhou.github.io/deep-person-reid/user_guide.html>`_ for the instruction.
- [Apr 2020] Code for reproducing the experiments of `deep mutual learning <https://zpascal.net/cvpr2018/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf>`_ in the `OSNet paper <https://arxiv.org/pdf/1905.00953v6.pdf>`__ (Supp. B) has been released at ``projects/DML``.
- [Apr 2020] Upgraded to ``v1.2.0``. The engine class has been made more model-agnostic to improve extensibility. See `Engine <torchreid/engine/engine.py>`_ and `ImageSoftmaxEngine <torchreid/engine/image/softmax.py>`_ for more details. Credit to `Dassl.pytorch <https://github.com/KaiyangZhou/Dassl.pytorch>`_.
- [Dec 2019] Our `OSNet paper <https://arxiv.org/pdf/1905.00953v6.pdf>`_ has been updated, with additional experiments (in section B of the supplementary) showing some useful techniques for improving OSNet's performance in practice.
- [Nov 2019] ``ImageDataManager`` can load training data from target datasets by setting ``load_train_targets=True``, and the train-loader can be accessed with ``train_loader_t = datamanager.train_loader_t``. This feature is useful for domain adaptation research.
In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point.
Below we provide an example to train and test `OSNet (Zhou et al. ICCV'19) <https://arxiv.org/abs/1905.00953>`_. Assume :code:`PATH_TO_DATA` is the directory containing reid datasets. The environmental variable :code:`CUDA_VISIBLE_DEVICES` is omitted, which you need to specify if you have a pool of gpus and want to use a specific set of them.
The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". Under the same folder, you can find the `tensorboard <https://pytorch.org/docs/stable/tensorboard.html>`_ file. To visualize the learning curves using tensorboard, you can run :code:`tensorboard --logdir=log/osnet_x1_0_market1501_softmax_cosinelr` in the terminal and visit :code:`http://localhost:6006/` in your web browser.
Here we only test the cross-domain performance. However, if you also want to test the performance on the source dataset, i.e. DukeMTMC-reID, you can set :code:`-t dukemtmcreid market1501`, which will evaluate the model on the two datasets separately.
Different from the same-domain setting, here we replace :code:`random_erase` with :code:`color_jitter`. This can improve the generalization performance on the unseen target dataset.
Pretrained models are available in the `Model Zoo <https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html>`_.