deep-person-reid/torchreid/utils/rerank.py

114 lines
4.6 KiB
Python
Raw Normal View History

2019-05-10 05:47:55 +08:00
#!/usr/bin/env python2/python3
# -*- coding: utf-8 -*-
"""
Source: https://github.com/zhunzhong07/person-re-ranking
Created on Mon Jun 26 14:46:56 2017
@author: luohao
2020-05-05 22:58:00 +08:00
Modified by Houjing Huang, 2017-12-22.
- This version accepts distance matrix instead of raw features.
2019-05-10 05:47:55 +08:00
- The difference of `/` division between python 2 and 3 is handled.
- numpy.float16 is replaced by numpy.float32 for numerical precision.
CVPR2017 paper:Zhong Z, Zheng L, Cao D, et al. Re-ranking Person Re-identification with k-reciprocal Encoding[J]. 2017.
url:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhong_Re-Ranking_Person_Re-Identification_CVPR_2017_paper.pdf
Matlab version: https://github.com/zhunzhong07/person-re-ranking
API
q_g_dist: query-gallery distance matrix, numpy array, shape [num_query, num_gallery]
q_q_dist: query-query distance matrix, numpy array, shape [num_query, num_query]
g_g_dist: gallery-gallery distance matrix, numpy array, shape [num_gallery, num_gallery]
k1, k2, lambda_value: parameters, the original paper is (k1=20, k2=6, lambda_value=0.3)
Returns:
final_dist: re-ranked distance, numpy array, shape [num_query, num_gallery]
"""
2019-12-01 10:35:44 +08:00
from __future__ import division, print_function, absolute_import
import numpy as np
2019-05-10 05:47:55 +08:00
__all__ = ['re_ranking']
def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1=20, k2=6, lambda_value=0.3):
# The following naming, e.g. gallery_num, is different from outer scope.
# Don't care about it.
original_dist = np.concatenate(
2019-12-01 10:35:44 +08:00
[
np.concatenate([q_q_dist, q_g_dist], axis=1),
np.concatenate([q_g_dist.T, g_g_dist], axis=1)
],
axis=0
)
2019-05-10 05:47:55 +08:00
original_dist = np.power(original_dist, 2).astype(np.float32)
2019-12-01 10:35:44 +08:00
original_dist = np.transpose(
1. * original_dist / np.max(original_dist, axis=0)
)
2019-05-10 05:47:55 +08:00
V = np.zeros_like(original_dist).astype(np.float32)
initial_rank = np.argsort(original_dist).astype(np.int32)
query_num = q_g_dist.shape[0]
gallery_num = q_g_dist.shape[0] + q_g_dist.shape[1]
all_num = gallery_num
for i in range(all_num):
# k-reciprocal neighbors
2019-12-01 10:35:44 +08:00
forward_k_neigh_index = initial_rank[i, :k1 + 1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
fi = np.where(backward_k_neigh_index == i)[0]
2019-05-10 05:47:55 +08:00
k_reciprocal_index = forward_k_neigh_index[fi]
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
2019-12-01 10:35:44 +08:00
candidate_forward_k_neigh_index = initial_rank[
candidate, :int(np.around(k1 / 2.)) + 1]
candidate_backward_k_neigh_index = initial_rank[
candidate_forward_k_neigh_index, :int(np.around(k1 / 2.)) + 1]
fi_candidate = np.where(
candidate_backward_k_neigh_index == candidate
)[0]
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[
fi_candidate]
if len(
np.
intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)
) > 2. / 3 * len(candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(
k_reciprocal_expansion_index, candidate_k_reciprocal_index
)
2019-05-10 05:47:55 +08:00
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
2019-12-01 10:35:44 +08:00
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
V[i, k_reciprocal_expansion_index] = 1. * weight / np.sum(weight)
original_dist = original_dist[:query_num, ]
2019-05-10 05:47:55 +08:00
if k2 != 1:
2019-12-01 10:35:44 +08:00
V_qe = np.zeros_like(V, dtype=np.float32)
2019-05-10 05:47:55 +08:00
for i in range(all_num):
2019-12-01 10:35:44 +08:00
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
2019-05-10 05:47:55 +08:00
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(gallery_num):
2019-12-01 10:35:44 +08:00
invIndex.append(np.where(V[:, i] != 0)[0])
2019-05-10 05:47:55 +08:00
2019-12-01 10:35:44 +08:00
jaccard_dist = np.zeros_like(original_dist, dtype=np.float32)
2019-05-10 05:47:55 +08:00
for i in range(query_num):
2019-12-01 10:35:44 +08:00
temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float32)
indNonZero = np.where(V[i, :] != 0)[0]
2019-05-10 05:47:55 +08:00
indImages = []
indImages = [invIndex[ind] for ind in indNonZero]
for j in range(len(indNonZero)):
2019-12-01 10:35:44 +08:00
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(
V[i, indNonZero[j]], V[indImages[j], indNonZero[j]]
)
jaccard_dist[i] = 1 - temp_min / (2.-temp_min)
2019-05-10 05:47:55 +08:00
2019-12-01 10:35:44 +08:00
final_dist = jaccard_dist * (1-lambda_value) + original_dist*lambda_value
2019-05-10 05:47:55 +08:00
del original_dist
del V
del jaccard_dist
2019-12-01 10:35:44 +08:00
final_dist = final_dist[:query_num, query_num:]
2019-05-10 05:47:55 +08:00
return final_dist