deep-person-reid/torchreid/datasets/viper.py

164 lines
6.3 KiB
Python
Raw Normal View History

2018-07-04 17:32:43 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2018-07-02 17:17:14 +08:00
import os
import glob
import re
import sys
import urllib
import tarfile
import zipfile
import os.path as osp
from scipy.io import loadmat
import numpy as np
import h5py
from scipy.misc import imsave
2018-08-15 16:48:17 +08:00
from torchreid.utils.iotools import mkdir_if_missing, write_json, read_json
2018-11-05 06:59:46 +08:00
from .bases import BaseImageDataset
2018-07-02 17:17:14 +08:00
2018-11-05 06:59:46 +08:00
class VIPeR(BaseImageDataset):
2018-07-02 17:17:14 +08:00
"""
VIPeR
Reference:
Gray et al. Evaluating appearance models for recognition, reacquisition, and tracking. PETS 2007.
URL: https://vision.soe.ucsc.edu/node/178
Dataset statistics:
# identities: 632
# images: 632 x 2 = 1264
# cameras: 2
"""
dataset_dir = 'viper'
2018-08-12 05:22:48 +08:00
def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
super(VIPeR, self).__init__(root)
self.dataset_dir = osp.join(self.root, self.dataset_dir)
2018-07-02 17:17:14 +08:00
self.dataset_url = 'http://users.soe.ucsc.edu/~manduchi/VIPeR.v1.0.zip'
self.cam_a_path = osp.join(self.dataset_dir, 'VIPeR', 'cam_a')
self.cam_b_path = osp.join(self.dataset_dir, 'VIPeR', 'cam_b')
self.split_path = osp.join(self.dataset_dir, 'splits.json')
self._download_data()
self._check_before_run()
self._prepare_split()
splits = read_json(self.split_path)
if split_id >= len(splits):
2019-01-31 06:41:47 +08:00
raise ValueError('split_id exceeds range, received {}, but expected between 0 and {}'.format(split_id, len(splits)-1))
2018-07-02 17:17:14 +08:00
split = splits[split_id]
train = split['train']
query = split['query'] # query and gallery share the same images
gallery = split['gallery']
train = [tuple(item) for item in train]
query = [tuple(item) for item in query]
gallery = [tuple(item) for item in gallery]
2018-07-02 18:57:01 +08:00
if verbose:
2019-01-31 06:41:47 +08:00
print('=> VIPeR loaded')
2018-11-05 06:59:46 +08:00
self.print_dataset_statistics(train, query, gallery)
2018-07-02 17:17:14 +08:00
self.train = train
self.query = query
self.gallery = gallery
2018-11-05 06:59:46 +08:00
self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train)
self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query)
self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery)
2018-07-02 17:17:14 +08:00
def _download_data(self):
if osp.exists(self.dataset_dir):
2019-01-31 06:41:47 +08:00
print('This dataset has been downloaded.')
2018-07-02 17:17:14 +08:00
return
2019-01-31 06:41:47 +08:00
print('Creating directory {}'.format(self.dataset_dir))
2018-07-02 17:17:14 +08:00
mkdir_if_missing(self.dataset_dir)
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
2019-01-31 06:41:47 +08:00
print('Downloading VIPeR dataset')
2018-07-02 17:17:14 +08:00
urllib.urlretrieve(self.dataset_url, fpath)
2019-01-31 06:41:47 +08:00
print('Extracting files')
2018-07-02 17:17:14 +08:00
zip_ref = zipfile.ZipFile(fpath, 'r')
zip_ref.extractall(self.dataset_dir)
zip_ref.close()
def _check_before_run(self):
"""Check if all files are available before going deeper"""
if not osp.exists(self.dataset_dir):
2019-01-31 06:41:47 +08:00
raise RuntimeError('"{}" is not available'.format(self.dataset_dir))
2018-07-02 17:17:14 +08:00
if not osp.exists(self.cam_a_path):
2019-01-31 06:41:47 +08:00
raise RuntimeError('"{}" is not available'.format(self.cam_a_path))
2018-07-02 17:17:14 +08:00
if not osp.exists(self.cam_b_path):
2019-01-31 06:41:47 +08:00
raise RuntimeError('"{}" is not available'.format(self.cam_b_path))
2018-07-02 17:17:14 +08:00
def _prepare_split(self):
if not osp.exists(self.split_path):
2019-01-31 06:41:47 +08:00
print('Creating 10 random splits of train ids and test ids')
2018-07-02 17:17:14 +08:00
cam_a_imgs = sorted(glob.glob(osp.join(self.cam_a_path, '*.bmp')))
cam_b_imgs = sorted(glob.glob(osp.join(self.cam_b_path, '*.bmp')))
assert len(cam_a_imgs) == len(cam_b_imgs)
num_pids = len(cam_a_imgs)
2019-01-31 06:41:47 +08:00
print('Number of identities: {}'.format(num_pids))
2018-07-02 17:17:14 +08:00
num_train_pids = num_pids // 2
2018-10-08 23:44:26 +08:00
"""
In total, there will be 20 splits because each random split creates two
sub-splits, one using cameraA as query and cameraB as gallery
while the other using cameraB as query and cameraA as gallery.
Therefore, results should be averaged over 20 splits (split_id=0~19).
In practice, a model trained on split_id=0 can be applied to split_id=0&1
as split_id=0&1 share the same training data (so on and so forth).
"""
2018-07-02 17:17:14 +08:00
splits = []
for _ in range(10):
order = np.arange(num_pids)
np.random.shuffle(order)
train_idxs = order[:num_train_pids]
test_idxs = order[num_train_pids:]
2019-01-31 06:41:47 +08:00
assert not bool(set(train_idxs) & set(test_idxs)), 'Error: train and test overlap'
2018-07-02 17:17:14 +08:00
train = []
for pid, idx in enumerate(train_idxs):
cam_a_img = cam_a_imgs[idx]
cam_b_img = cam_b_imgs[idx]
train.append((cam_a_img, pid, 0))
train.append((cam_b_img, pid, 1))
2018-10-08 23:44:26 +08:00
test_a = []
test_b = []
2018-07-02 17:17:14 +08:00
for pid, idx in enumerate(test_idxs):
cam_a_img = cam_a_imgs[idx]
cam_b_img = cam_b_imgs[idx]
2018-10-08 23:44:26 +08:00
test_a.append((cam_a_img, pid, 0))
test_b.append((cam_b_img, pid, 1))
2018-07-02 17:17:14 +08:00
2018-10-08 23:44:26 +08:00
# use cameraA as query and cameraB as gallery
split = {'train': train, 'query': test_a, 'gallery': test_b,
'num_train_pids': num_train_pids,
'num_query_pids': num_pids - num_train_pids,
'num_gallery_pids': num_pids - num_train_pids
}
splits.append(split)
# use cameraB as query and cameraA as gallery
split = {'train': train, 'query': test_b, 'gallery': test_a,
2018-07-02 17:17:14 +08:00
'num_train_pids': num_train_pids,
'num_query_pids': num_pids - num_train_pids,
'num_gallery_pids': num_pids - num_train_pids
}
splits.append(split)
2019-01-31 06:41:47 +08:00
print('Totally {} splits are created'.format(len(splits)))
2018-07-02 17:17:14 +08:00
write_json(splits, self.split_path)
2019-01-31 06:41:47 +08:00
print('Split file saved to {}'.format(self.split_path))
2018-07-02 17:17:14 +08:00
2019-01-31 06:41:47 +08:00
print('Splits created')