deep-person-reid/README.rst

292 lines
9.8 KiB
ReStructuredText
Raw Normal View History

2019-03-25 00:08:55 +08:00
Torchreid
===========
2019-10-23 23:11:15 +08:00
.. image:: https://img.shields.io/github/license/KaiyangZhou/deep-person-reid
:alt: GitHub license
:target: https://github.com/KaiyangZhou/deep-person-reid/blob/master/LICENSE
2019-03-24 07:09:39 +08:00
Torchreid is a library built on `PyTorch <https://pytorch.org/>`_ for deep-learning person re-identification.
2019-03-21 20:53:21 +08:00
It features:
- multi-GPU training
2019-03-24 07:09:39 +08:00
- support both image- and video-reid
2019-03-21 20:53:21 +08:00
- end-to-end training and evaluation
- incredibly easy preparation of reid datasets
- multi-dataset training
- cross-dataset evaluation
- standard protocol used by most research papers
- highly extensible (easy to add models, datasets, training methods, etc.)
- implementations of state-of-the-art deep reid models
- access to pretrained reid models
- advanced training techniques
2019-08-23 06:18:56 +08:00
- visualization tools (tensorboard, ranks, etc.)
2019-03-21 20:53:21 +08:00
2019-08-26 20:25:09 +08:00
Code: https://github.com/KaiyangZhou/deep-person-reid.
2019-03-25 01:30:39 +08:00
Documentation: https://kaiyangzhou.github.io/deep-person-reid/.
2019-08-26 20:25:09 +08:00
How-to instructions: https://kaiyangzhou.github.io/deep-person-reid/user_guide.
2019-05-25 00:22:41 +08:00
2019-07-11 20:38:07 +08:00
Model zoo: https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.
2019-10-23 23:11:15 +08:00
Tech report: https://arxiv.org/abs/1910.10093.
2019-03-25 01:30:39 +08:00
2019-03-21 20:53:21 +08:00
Installation
---------------
2019-03-24 22:36:17 +08:00
2019-08-26 17:34:31 +08:00
Make sure your `conda <https://www.anaconda.com/distribution/>`_ is installed.
2019-04-20 03:47:12 +08:00
2019-03-24 23:52:39 +08:00
2019-03-24 22:36:17 +08:00
.. code-block:: bash
2019-04-20 03:47:12 +08:00
2019-08-26 17:34:31 +08:00
# cd to your preferred directory and clone this repo
git clone https://github.com/KaiyangZhou/deep-person-reid.git
2019-04-20 03:47:12 +08:00
2019-08-26 17:34:31 +08:00
# create environment
cd deep-person-reid/
conda create --name torchreid python=3.7
conda activate torchreid
2019-04-20 03:47:12 +08:00
2019-08-26 17:34:31 +08:00
# install dependencies
# make sure `which python` and `which pip` point to the correct path
pip install -r requirements.txt
2019-04-20 03:47:12 +08:00
2019-08-26 17:34:31 +08:00
# install torch and torchvision (select the proper cuda version to suit your machine)
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
2019-04-20 03:47:12 +08:00
2019-08-26 17:34:31 +08:00
# install torchreid (don't need to re-build it if you modify the source code)
python setup.py develop
2019-03-21 20:53:21 +08:00
Get started: 30 seconds to Torchreid
-------------------------------------
2019-03-24 07:09:39 +08:00
1. Import ``torchreid``
.. code-block:: python
import torchreid
2. Load data manager
.. code-block:: python
datamanager = torchreid.data.ImageDataManager(
root='reid-data',
sources='market1501',
2019-08-26 17:34:31 +08:00
targets='market1501',
2019-03-24 07:09:39 +08:00
height=256,
width=128,
2019-08-26 17:34:31 +08:00
batch_size_train=32,
batch_size_test=100,
2019-07-11 20:38:07 +08:00
transforms=['random_flip', 'random_crop']
2019-03-24 07:09:39 +08:00
)
3 Build model, optimizer and lr_scheduler
.. code-block:: python
model = torchreid.models.build_model(
name='resnet50',
num_classes=datamanager.num_train_pids,
loss='softmax',
pretrained=True
)
2019-03-25 05:02:18 +08:00
model = model.cuda()
2019-03-24 07:09:39 +08:00
optimizer = torchreid.optim.build_optimizer(
model,
optim='adam',
lr=0.0003
)
scheduler = torchreid.optim.build_lr_scheduler(
optimizer,
lr_scheduler='single_step',
stepsize=20
)
4. Build engine
.. code-block:: python
engine = torchreid.engine.ImageSoftmaxEngine(
datamanager,
model,
optimizer=optimizer,
scheduler=scheduler,
label_smooth=True
)
5. Run training and test
.. code-block:: python
engine.run(
save_dir='log/resnet50',
max_epoch=60,
eval_freq=10,
print_freq=10,
test_only=False
)
2019-03-21 20:53:21 +08:00
2019-03-24 23:52:39 +08:00
A unified interface
-----------------------
2019-08-26 17:34:31 +08:00
In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. "configs/" contains some predefined configs which you can use as a starting point.
2019-08-26 20:25:09 +08:00
Below we provide examples to train and test `OSNet (Zhou et al. ICCV'19) <https://arxiv.org/abs/1905.00953>`_. Assume :code:`PATH_TO_DATA` is the directory containing reid datasets.
2019-08-26 17:34:31 +08:00
Conventional setting
^^^^^^^^^^^^^^^^^^^^^
2019-08-24 05:48:03 +08:00
2019-08-26 17:34:31 +08:00
To train OSNet on Market1501, do
2019-03-24 23:52:39 +08:00
2019-03-24 23:54:55 +08:00
.. code-block:: bash
2019-08-26 17:34:31 +08:00
2019-08-24 05:48:03 +08:00
python scripts/main.py \
2019-08-26 17:34:31 +08:00
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
--transforms random_flip random_erase \
--root $PATH_TO_DATA \
2019-03-24 23:52:39 +08:00
--gpu-devices 0
2019-08-26 17:34:31 +08:00
The config file sets Market1501 as the default dataset. If you wanna use DukeMTMC-reID, do
2019-08-24 05:48:03 +08:00
.. code-block:: bash
2019-08-26 17:34:31 +08:00
python scripts/main.py \
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
-s dukemtmcreid \
-t dukemtmcreid \
--transforms random_flip random_erase \
--root $PATH_TO_DATA \
2019-08-26 18:14:54 +08:00
--gpu-devices 0 \
data.save_dir log/osnet_x1_0_dukemtmcreid_softmax_cosinelr
2019-08-26 17:34:31 +08:00
2019-08-26 20:25:09 +08:00
The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". Under the same folder, you can find the `tensorboard <https://pytorch.org/docs/stable/tensorboard.html>`_ file. To visualize the learning curves using tensorboard, you can run :code:`tensorboard --logdir=log/osnet_x1_0_market1501_softmax_cosinelr` in the terminal and visit :code:`http://localhost:6006/` in your web browser.
2019-08-26 17:34:31 +08:00
2019-08-26 18:14:54 +08:00
Evaluation is automatically performed at the end of training. To run the test again using the trained model, do
2019-08-26 17:34:31 +08:00
.. code-block:: bash
2019-08-24 05:48:03 +08:00
python scripts/main.py \
2019-08-26 17:34:31 +08:00
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
--root $PATH_TO_DATA \
--gpu-devices 0 \
model.load_weights log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250 \
test.evaluate True
Cross-domain setting
^^^^^^^^^^^^^^^^^^^^^
Suppose you wanna train OSNet on DukeMTMC-reID and test its performance on Market1501, you can do
.. code-block:: bash
python scripts/main.py \
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad.yaml \
-s dukemtmcreid \
-t market1501 \
--transforms random_flip color_jitter \
--root $PATH_TO_DATA \
2019-08-24 05:48:03 +08:00
--gpu-devices 0
2019-08-26 18:14:54 +08:00
Here we only test the cross-domain performance. However, if you also want to test the performance on the source dataset, i.e. DukeMTMC-reID, you can set :code:`-t dukemtmcreid market1501`, which will evaluate the model on the two datasets separately.
2019-08-26 17:34:31 +08:00
Different from the same-domain setting, here we replace :code:`random_erase` with :code:`color_jitter`. This can improve the generalization performance on the unseen target dataset.
Pretrained models are available in the `Model Zoo <https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html>`_.
2019-03-24 23:52:39 +08:00
2019-03-21 20:53:21 +08:00
Datasets
--------
Image-reid datasets
^^^^^^^^^^^^^^^^^^^^^
- `Market1501 <https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf>`_
- `CUHK03 <https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf>`_
- `DukeMTMC-reID <https://arxiv.org/abs/1701.07717>`_
- `MSMT17 <https://arxiv.org/abs/1711.08565>`_
- `VIPeR <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.7285&rep=rep1&type=pdf>`_
- `GRID <http://www.eecs.qmul.ac.uk/~txiang/publications/LoyXiangGong_cvpr_2009.pdf>`_
- `CUHK01 <http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf>`_
- `SenseReID <http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf>`_
- `QMUL-iLIDS <http://www.eecs.qmul.ac.uk/~sgg/papers/ZhengGongXiang_BMVC09.pdf>`_
- `PRID <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_
Video-reid datasets
^^^^^^^^^^^^^^^^^^^^^^^
- `MARS <http://www.liangzheng.org/1320.pdf>`_
- `iLIDS-VID <https://www.eecs.qmul.ac.uk/~sgg/papers/WangEtAl_ECCV14.pdf>`_
- `PRID2011 <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_
- `DukeMTMC-VideoReID <http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf>`_
Models
-------
ImageNet classification models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- `ResNet <https://arxiv.org/abs/1512.03385>`_
- `ResNeXt <https://arxiv.org/abs/1611.05431>`_
- `SENet <https://arxiv.org/abs/1709.01507>`_
- `DenseNet <https://arxiv.org/abs/1608.06993>`_
- `Inception-ResNet-V2 <https://arxiv.org/abs/1602.07261>`_
- `Inception-V4 <https://arxiv.org/abs/1602.07261>`_
- `Xception <https://arxiv.org/abs/1610.02357>`_
Lightweight models
^^^^^^^^^^^^^^^^^^^
- `NASNet <https://arxiv.org/abs/1707.07012>`_
- `MobileNetV2 <https://arxiv.org/abs/1801.04381>`_
- `ShuffleNet <https://arxiv.org/abs/1707.01083>`_
2019-06-06 05:18:28 +08:00
- `ShuffleNetV2 <https://arxiv.org/abs/1807.11164>`_
2019-03-21 20:53:21 +08:00
- `SqueezeNet <https://arxiv.org/abs/1602.07360>`_
ReID-specific models
^^^^^^^^^^^^^^^^^^^^^^
- `MuDeep <https://arxiv.org/abs/1709.05165>`_
- `ResNet-mid <https://arxiv.org/abs/1711.08106>`_
- `HACNN <https://arxiv.org/abs/1802.08122>`_
- `PCB <https://arxiv.org/abs/1711.09349>`_
- `MLFN <https://arxiv.org/abs/1803.09132>`_
2019-07-03 20:42:31 +08:00
- `OSNet <https://arxiv.org/abs/1905.00953>`_
2019-10-23 23:11:15 +08:00
- `OSNet-AIN <https://arxiv.org/abs/1910.06827>`_
2019-03-21 20:53:21 +08:00
Losses
------
- `Softmax (cross entropy loss with label smoothing) <https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf>`_
- `Triplet (hard example mining triplet loss) <https://arxiv.org/abs/1703.07737>`_
Citation
---------
2019-10-23 23:11:15 +08:00
If you find this code useful to your research, please cite the following publications.
2019-05-06 17:48:03 +08:00
.. code-block:: bash
2019-10-23 23:11:15 +08:00
@article{torchreid,
title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},
author={Zhou, Kaiyang and Xiang, Tao},
journal={arXiv preprint arXiv:1910.10093},
year={2019}
}
2019-05-06 17:48:03 +08:00
2019-10-23 23:11:15 +08:00
@inproceedings{zhou2019osnet,
2019-06-06 05:18:28 +08:00
title={Omni-Scale Feature Learning for Person Re-Identification},
author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
2019-10-23 23:11:15 +08:00
booktitle={ICCV},
year={2019}
}
@article{zhou2019learning,
title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},
author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
journal={arXiv preprint arXiv:1910.06827},
2019-06-06 05:18:28 +08:00
year={2019}
2019-05-06 17:48:03 +08:00
}