deep-person-reid/train_imgreid_xent_htri.py

352 lines
14 KiB
Python
Raw Normal View History

2018-07-04 17:32:43 +08:00
from __future__ import print_function
from __future__ import division
2018-03-12 21:53:08 +08:00
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import lr_scheduler
2018-11-06 05:36:12 +08:00
from torchreid.data_manager import ImageDataManager
from torchreid.transforms import build_transforms
2018-08-15 16:48:17 +08:00
from torchreid import models
from torchreid.losses import CrossEntropyLoss, TripletLoss, DeepSupervision
2018-08-15 16:48:17 +08:00
from torchreid.utils.iotools import save_checkpoint, check_isfile
from torchreid.utils.avgmeter import AverageMeter
from torchreid.utils.logger import Logger
from torchreid.utils.torchtools import count_num_param
from torchreid.utils.reidtools import visualize_ranked_results
from torchreid.eval_metrics import evaluate
from torchreid.samplers import RandomIdentitySampler
from torchreid.optimizers import init_optim
2018-03-12 21:53:08 +08:00
2018-07-02 20:57:11 +08:00
2018-03-12 21:53:08 +08:00
parser = argparse.ArgumentParser(description='Train image model with cross entropy loss and hard triplet loss')
# Datasets
2018-07-04 17:32:43 +08:00
parser.add_argument('--root', type=str, default='data',
help="root path to data directory")
2018-11-06 05:36:12 +08:00
parser.add_argument('-s', '--source', type=str, required=True, nargs='+')
parser.add_argument('-t', '--target', type=str, required=True, nargs='+')
2018-03-12 21:53:08 +08:00
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=256,
help="height of an image (default: 256)")
parser.add_argument('--width', type=int, default=128,
help="width of an image (default: 128)")
2018-07-04 17:32:43 +08:00
parser.add_argument('--split-id', type=int, default=0,
2018-09-20 04:15:17 +08:00
help="split index (0-based)")
2018-04-23 23:08:24 +08:00
# CUHK03-specific setting
2018-04-23 03:48:40 +08:00
parser.add_argument('--cuhk03-labeled', action='store_true',
2018-09-20 04:15:17 +08:00
help="use labeled images, if false, detected images are used (default: False)")
2018-04-23 22:58:51 +08:00
parser.add_argument('--cuhk03-classic-split', action='store_true',
2018-09-20 04:15:17 +08:00
help="use classic split by Li et al. CVPR'14 (default: False)")
2018-04-23 19:57:50 +08:00
parser.add_argument('--use-metric-cuhk03', action='store_true',
2018-09-20 04:15:17 +08:00
help="use cuhk03-metric (default: False)")
2018-03-12 21:53:08 +08:00
# Optimization options
2018-07-04 17:32:43 +08:00
parser.add_argument('--optim', type=str, default='adam',
help="optimization algorithm (see optimizers.py)")
2018-07-02 18:56:30 +08:00
parser.add_argument('--max-epoch', default=60, type=int,
2018-03-12 21:53:08 +08:00
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
2018-07-04 17:32:43 +08:00
parser.add_argument('--test-batch', default=100, type=int,
help="test batch size")
2018-03-12 21:53:08 +08:00
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate")
2018-07-02 17:17:14 +08:00
parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int,
help="stepsize to decay learning rate")
2018-03-12 21:53:08 +08:00
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
2018-07-04 17:32:43 +08:00
parser.add_argument('--margin', type=float, default=0.3,
help="margin for triplet loss")
2018-03-12 21:53:08 +08:00
parser.add_argument('--num-instances', type=int, default=4,
help="number of instances per identity")
2018-09-20 04:15:17 +08:00
parser.add_argument('--htri-only', action='store_true',
help="only use hard triplet loss (default: Fasle)")
parser.add_argument('--lambda-xent', type=float, default=1,
help="weight to balance cross entropy loss")
parser.add_argument('--lambda-htri', type=float, default=1,
help="weight to balance hard triplet loss")
parser.add_argument('--label-smooth', action='store_true',
help="use label smoothing regularizer in cross entropy loss")
2018-03-12 21:53:08 +08:00
# Architecture
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
# Miscs
2018-07-04 17:32:43 +08:00
parser.add_argument('--print-freq', type=int, default=10,
help="print frequency")
parser.add_argument('--seed', type=int, default=1,
help="manual seed")
2018-03-12 21:53:08 +08:00
parser.add_argument('--resume', type=str, default='', metavar='PATH')
2018-07-10 18:56:30 +08:00
parser.add_argument('--load-weights', type=str, default='',
help="load pretrained weights but ignores layers that don't match in size")
2018-07-04 17:32:43 +08:00
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
2018-03-12 21:53:08 +08:00
parser.add_argument('--eval-step', type=int, default=-1,
help="run evaluation for every N epochs (set to -1 to test after training)")
2018-07-04 17:32:43 +08:00
parser.add_argument('--start-eval', type=int, default=0,
help="start to evaluate after specific epoch")
2018-03-12 21:53:08 +08:00
parser.add_argument('--save-dir', type=str, default='log')
2018-07-04 17:32:43 +08:00
parser.add_argument('--use-cpu', action='store_true',
help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
2018-09-20 04:15:17 +08:00
parser.add_argument('--use-avai-gpus', action='store_true',
help="use available gpus instead of specified devices (this is useful when using managed clusters)")
parser.add_argument('--visualize-ranks', action='store_true',
2018-08-01 19:04:58 +08:00
help="visualize ranked results, only available in evaluation mode (default: False)")
2018-03-12 21:53:08 +08:00
# global variables
2018-03-12 21:53:08 +08:00
args = parser.parse_args()
2018-07-02 20:57:11 +08:00
2018-03-12 21:53:08 +08:00
def main():
2018-11-06 05:36:12 +08:00
global args
2018-03-12 21:53:08 +08:00
torch.manual_seed(args.seed)
2018-09-20 04:15:17 +08:00
if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
2018-03-12 21:53:08 +08:00
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
2018-03-14 20:35:14 +08:00
print("Currently using GPU {}".format(args.gpu_devices))
2018-03-12 21:53:08 +08:00
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
transform_train = build_transforms(args.height, args.width, is_train=True)
transform_test = build_transforms(args.height, args.width, is_train=False)
2018-03-12 21:53:08 +08:00
pin_memory = True if use_gpu else False
2018-11-06 05:36:12 +08:00
dm = ImageDataManager(
args.source, args.target, args.root, args.split_id, transform_train, transform_test,
args.train_batch, args.test_batch, args.workers, pin_memory,
cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split
2018-03-12 21:53:08 +08:00
)
2018-11-06 05:36:12 +08:00
trainloader = dm.trainloader
testloader_dict = dm.testloader_dict
2018-03-12 21:53:08 +08:00
print("Initializing model: {}".format(args.arch))
2018-11-06 05:36:12 +08:00
model = models.init_model(name=args.arch, num_classes=dm.num_train_pids, loss={'xent', 'htri'})
2018-07-06 18:03:38 +08:00
print("Model size: {:.3f} M".format(count_num_param(model)))
2018-03-12 21:53:08 +08:00
2018-11-06 05:36:12 +08:00
criterion = CrossEntropyLoss(num_classes=dm.num_train_pids, use_gpu=use_gpu, label_smooth=args.label_smooth)
2018-03-12 21:53:08 +08:00
criterion_htri = TripletLoss(margin=args.margin)
2018-03-12 22:18:22 +08:00
2018-04-27 16:51:04 +08:00
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
2018-07-02 17:17:14 +08:00
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
2018-03-12 21:53:08 +08:00
if args.load_weights and check_isfile(args.load_weights):
2018-07-10 18:56:30 +08:00
# load pretrained weights but ignore layers that don't match in size
checkpoint = torch.load(args.load_weights)
pretrain_dict = checkpoint['state_dict']
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Loaded pretrained weights from '{}'".format(args.load_weights))
if args.resume and check_isfile(args.resume):
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
args.start_epoch = checkpoint['epoch'] + 1
print("Loaded checkpoint from '{}'".format(args.resume))
2018-11-06 05:36:12 +08:00
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, checkpoint['rank1']))
2018-03-12 21:53:08 +08:00
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
2018-11-06 05:36:12 +08:00
for name in args.target:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]['query']
galleryloader = testloader_dict[name]['gallery']
distmat = test(model, queryloader, galleryloader, use_gpu, return_distmat=True)
if args.visualize_ranks:
visualize_ranked_results(
distmat, dataset,
save_dir=osp.join(args.save_dir, 'ranked_results', name),
topk=20
)
2018-03-12 21:53:08 +08:00
return
start_time = time.time()
2018-04-30 18:19:44 +08:00
train_time = 0
2018-04-27 17:03:24 +08:00
print("==> Start training")
2018-03-12 21:53:08 +08:00
2018-08-01 21:59:43 +08:00
for epoch in range(args.start_epoch, args.max_epoch):
2018-04-30 18:19:44 +08:00
start_train_time = time.time()
2018-04-27 17:03:24 +08:00
train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
2018-04-30 18:19:44 +08:00
train_time += round(time.time() - start_train_time)
2018-03-12 21:53:08 +08:00
2018-07-02 17:17:14 +08:00
scheduler.step()
2018-03-12 21:53:08 +08:00
2018-08-01 21:59:43 +08:00
if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch:
2018-03-12 21:53:08 +08:00
print("==> Test")
2018-07-06 18:03:38 +08:00
2018-11-06 05:36:12 +08:00
for name in args.target:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]['query']
galleryloader = testloader_dict[name]['gallery']
rank1 = test(model, queryloader, galleryloader, use_gpu)
2018-03-12 21:53:08 +08:00
2018-03-28 07:41:49 +08:00
if use_gpu:
2018-03-29 23:45:39 +08:00
state_dict = model.module.state_dict()
2018-03-28 07:41:49 +08:00
else:
state_dict = model.state_dict()
2018-07-06 18:03:38 +08:00
2018-03-12 21:53:08 +08:00
save_checkpoint({
2018-03-28 07:41:49 +08:00
'state_dict': state_dict,
2018-03-12 21:53:08 +08:00
'rank1': rank1,
'epoch': epoch,
2018-11-06 05:36:12 +08:00
}, False, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
2018-04-27 16:33:12 +08:00
2018-03-12 21:53:08 +08:00
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
2018-04-30 18:19:44 +08:00
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
2018-03-12 21:53:08 +08:00
2018-07-02 20:57:11 +08:00
2018-04-27 17:03:24 +08:00
def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu):
2018-03-12 21:53:08 +08:00
losses = AverageMeter()
2018-05-23 02:27:09 +08:00
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
2018-03-12 21:53:08 +08:00
2018-05-23 02:27:09 +08:00
end = time.time()
2018-03-12 21:53:08 +08:00
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
2018-05-23 18:42:32 +08:00
data_time.update(time.time() - end)
2018-07-02 20:57:11 +08:00
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
2018-03-12 21:53:08 +08:00
outputs, features = model(imgs)
2018-03-27 17:51:10 +08:00
if args.htri_only:
if isinstance(features, (tuple, list)):
2018-04-27 01:00:03 +08:00
loss = DeepSupervision(criterion_htri, features, pids)
2018-04-25 00:07:59 +08:00
else:
loss = criterion_htri(features, pids)
2018-03-27 17:51:10 +08:00
else:
if isinstance(outputs, (tuple, list)):
2018-04-27 01:00:03 +08:00
xent_loss = DeepSupervision(criterion_xent, outputs, pids)
else:
xent_loss = criterion_xent(outputs, pids)
if isinstance(features, (tuple, list)):
2018-04-27 01:00:03 +08:00
htri_loss = DeepSupervision(criterion_htri, features, pids)
2018-04-25 00:07:59 +08:00
else:
htri_loss = criterion_htri(features, pids)
loss = args.lambda_xent * xent_loss + args.lambda_htri * htri_loss
2018-03-12 21:53:08 +08:00
optimizer.zero_grad()
loss.backward()
optimizer.step()
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
losses.update(loss.item(), pids.size(0))
2018-03-12 21:53:08 +08:00
2018-08-01 21:59:43 +08:00
if (batch_idx + 1) % args.print_freq == 0:
2018-05-23 02:27:09 +08:00
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
2018-05-23 02:27:09 +08:00
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
2018-08-01 21:59:43 +08:00
epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time,
2018-05-23 02:27:09 +08:00
data_time=data_time, loss=losses))
2018-07-02 23:39:52 +08:00
end = time.time()
2018-05-23 02:27:09 +08:00
2018-03-12 21:53:08 +08:00
2018-08-01 19:04:58 +08:00
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20], return_distmat=False):
2018-05-23 02:27:09 +08:00
batch_time = AverageMeter()
2018-03-12 21:53:08 +08:00
model.eval()
2018-04-26 21:11:43 +08:00
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
if use_gpu:
imgs = imgs.cuda()
2018-05-23 02:27:09 +08:00
end = time.time()
2018-04-26 21:11:43 +08:00
features = model(imgs)
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
if use_gpu:
imgs = imgs.cuda()
2018-05-23 02:27:09 +08:00
end = time.time()
2018-04-26 21:11:43 +08:00
features = model(imgs)
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
2018-05-23 02:27:09 +08:00
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch))
2018-03-12 21:53:08 +08:00
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
2018-04-23 19:57:50 +08:00
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, use_metric_cuhk03=args.use_metric_cuhk03)
2018-03-12 21:53:08 +08:00
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
2018-08-01 19:04:58 +08:00
if return_distmat:
return distmat
2018-03-12 21:53:08 +08:00
return cmc[0]
2018-07-02 20:57:11 +08:00
2018-03-12 21:53:08 +08:00
if __name__ == '__main__':
2018-07-02 23:39:52 +08:00
main()