101 lines
3.6 KiB
ReStructuredText
101 lines
3.6 KiB
ReStructuredText
|
Torchreid is a library built on `PyTorch <https://pytorch.org/>`_ for research on deep-learning person re-identification.
|
||
|
|
||
|
It features:
|
||
|
|
||
|
- multi-GPU training
|
||
|
- support both image reid and video reid
|
||
|
- end-to-end training and evaluation
|
||
|
- incredibly easy preparation of reid datasets
|
||
|
- multi-dataset training
|
||
|
- cross-dataset evaluation
|
||
|
- standard protocol used by most research papers
|
||
|
- highly extensible (easy to add models, datasets, training methods, etc.)
|
||
|
- implementations of state-of-the-art deep reid models
|
||
|
- access to pretrained reid models
|
||
|
- advanced training techniques
|
||
|
- visualization of ranking results
|
||
|
|
||
|
|
||
|
Installation
|
||
|
---------------
|
||
|
1. Install step 1
|
||
|
#. Install step 2
|
||
|
#. Install step 3
|
||
|
|
||
|
|
||
|
News
|
||
|
------
|
||
|
xx-xx-2019: Torchreid documentation is out!
|
||
|
|
||
|
|
||
|
Get started: 30 seconds to Torchreid
|
||
|
-------------------------------------
|
||
|
1. Load dataset
|
||
|
2. Build model, optimizer and lr_scheduler
|
||
|
3. Build engine
|
||
|
4. Runers
|
||
|
|
||
|
|
||
|
Datasets
|
||
|
--------
|
||
|
|
||
|
Image-reid datasets
|
||
|
^^^^^^^^^^^^^^^^^^^^^
|
||
|
- `Market1501 <https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf>`_
|
||
|
- `CUHK03 <https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf>`_
|
||
|
- `DukeMTMC-reID <https://arxiv.org/abs/1701.07717>`_
|
||
|
- `MSMT17 <https://arxiv.org/abs/1711.08565>`_
|
||
|
- `VIPeR <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.7285&rep=rep1&type=pdf>`_
|
||
|
- `GRID <http://www.eecs.qmul.ac.uk/~txiang/publications/LoyXiangGong_cvpr_2009.pdf>`_
|
||
|
- `CUHK01 <http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf>`_
|
||
|
- `PRID450S <https://pdfs.semanticscholar.org/f62d/71e701c9fd021610e2076b5e0f5b2c7c86ca.pdf>`_
|
||
|
- `SenseReID <http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf>`_
|
||
|
- `QMUL-iLIDS <http://www.eecs.qmul.ac.uk/~sgg/papers/ZhengGongXiang_BMVC09.pdf>`_
|
||
|
- `PRID <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_
|
||
|
|
||
|
Video-reid datasets
|
||
|
^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
- `MARS <http://www.liangzheng.org/1320.pdf>`_
|
||
|
- `iLIDS-VID <https://www.eecs.qmul.ac.uk/~sgg/papers/WangEtAl_ECCV14.pdf>`_
|
||
|
- `PRID2011 <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_
|
||
|
- `DukeMTMC-VideoReID <http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf>`_
|
||
|
|
||
|
Models
|
||
|
-------
|
||
|
|
||
|
ImageNet classification models
|
||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
- `ResNet <https://arxiv.org/abs/1512.03385>`_
|
||
|
- `ResNeXt <https://arxiv.org/abs/1611.05431>`_
|
||
|
- `SENet <https://arxiv.org/abs/1709.01507>`_
|
||
|
- `DenseNet <https://arxiv.org/abs/1608.06993>`_
|
||
|
- `Inception-ResNet-V2 <https://arxiv.org/abs/1602.07261>`_
|
||
|
- `Inception-V4 <https://arxiv.org/abs/1602.07261>`_
|
||
|
- `Xception <https://arxiv.org/abs/1610.02357>`_
|
||
|
|
||
|
Lightweight models
|
||
|
^^^^^^^^^^^^^^^^^^^
|
||
|
- `NASNet <https://arxiv.org/abs/1707.07012>`_
|
||
|
- `MobileNetV2 <https://arxiv.org/abs/1801.04381>`_
|
||
|
- `ShuffleNet <https://arxiv.org/abs/1707.01083>`_
|
||
|
- `SqueezeNet <https://arxiv.org/abs/1602.07360>`_
|
||
|
|
||
|
ReID-specific models
|
||
|
^^^^^^^^^^^^^^^^^^^^^^
|
||
|
- `MuDeep <https://arxiv.org/abs/1709.05165>`_
|
||
|
- `ResNet-mid <https://arxiv.org/abs/1711.08106>`_
|
||
|
- `HACNN <https://arxiv.org/abs/1802.08122>`_
|
||
|
- `PCB <https://arxiv.org/abs/1711.09349>`_
|
||
|
- `MLFN <https://arxiv.org/abs/1803.09132>`_
|
||
|
|
||
|
|
||
|
Losses
|
||
|
------
|
||
|
|
||
|
- `Softmax (cross entropy loss with label smoothing) <https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf>`_
|
||
|
- `Triplet (hard example mining triplet loss) <https://arxiv.org/abs/1703.07737>`_
|
||
|
|
||
|
|
||
|
Citation
|
||
|
---------
|
||
|
Please link this project in your paper
|