deep-person-reid/torchreid/engine/image/triplet.py

187 lines
6.4 KiB
Python
Raw Normal View History

2019-12-01 10:35:44 +08:00
from __future__ import division, print_function, absolute_import
2019-03-20 01:26:08 +08:00
import time
import datetime
from torchreid import metrics
2019-12-01 10:35:44 +08:00
from torchreid.utils import (
AverageMeter, open_all_layers, open_specified_layers
)
from torchreid.engine import Engine
from torchreid.losses import TripletLoss, CrossEntropyLoss
2019-03-20 01:26:08 +08:00
class ImageTripletEngine(Engine):
2019-12-01 10:35:44 +08:00
2019-05-24 22:36:10 +08:00
r"""Triplet-loss engine for image-reid.
2019-03-24 07:09:39 +08:00
Args:
datamanager (DataManager): an instance of ``torchreid.data.ImageDataManager``
or ``torchreid.data.VideoDataManager``.
model (nn.Module): model instance.
optimizer (Optimizer): an Optimizer.
margin (float, optional): margin for triplet loss. Default is 0.3.
weight_t (float, optional): weight for triplet loss. Default is 1.
weight_x (float, optional): weight for softmax loss. Default is 1.
scheduler (LRScheduler, optional): if None, no learning rate decay will be performed.
2019-08-26 17:34:31 +08:00
use_gpu (bool, optional): use gpu. Default is True.
2019-03-24 07:09:39 +08:00
label_smooth (bool, optional): use label smoothing regularizer. Default is True.
Examples::
import torchreid
datamanager = torchreid.data.ImageDataManager(
root='path/to/reid-data',
sources='market1501',
height=256,
width=128,
combineall=False,
batch_size=32,
num_instances=4,
train_sampler='RandomIdentitySampler' # this is important
)
model = torchreid.models.build_model(
name='resnet50',
num_classes=datamanager.num_train_pids,
loss='triplet'
)
model = model.cuda()
optimizer = torchreid.optim.build_optimizer(
model, optim='adam', lr=0.0003
)
scheduler = torchreid.optim.build_lr_scheduler(
optimizer,
lr_scheduler='single_step',
stepsize=20
)
engine = torchreid.engine.ImageTripletEngine(
datamanager, model, optimizer, margin=0.3,
weight_t=0.7, weight_x=1, scheduler=scheduler
)
engine.run(
max_epoch=60,
save_dir='log/resnet50-triplet-market1501',
print_freq=10
)
2019-12-01 10:35:44 +08:00
"""
def __init__(
self,
datamanager,
model,
optimizer,
margin=0.3,
weight_t=1,
weight_x=1,
scheduler=None,
use_gpu=True,
label_smooth=True
):
super(ImageTripletEngine, self
).__init__(datamanager, model, optimizer, scheduler, use_gpu)
2019-03-20 01:26:08 +08:00
self.weight_t = weight_t
self.weight_x = weight_x
2019-12-01 10:35:44 +08:00
2019-03-20 01:26:08 +08:00
self.criterion_t = TripletLoss(margin=margin)
self.criterion_x = CrossEntropyLoss(
2019-03-21 20:53:21 +08:00
num_classes=self.datamanager.num_train_pids,
2019-03-20 01:26:08 +08:00
use_gpu=self.use_gpu,
label_smooth=label_smooth
)
2019-12-01 10:35:44 +08:00
def train(
self,
epoch,
max_epoch,
writer,
print_freq=10,
fixbase_epoch=0,
open_layers=None
):
2019-03-20 01:26:08 +08:00
losses_t = AverageMeter()
losses_x = AverageMeter()
accs = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
self.model.train()
2019-12-01 10:35:44 +08:00
if (epoch + 1) <= fixbase_epoch and open_layers is not None:
print(
'* Only train {} (epoch: {}/{})'.format(
open_layers, epoch + 1, fixbase_epoch
)
)
2019-03-20 01:26:08 +08:00
open_specified_layers(self.model, open_layers)
else:
open_all_layers(self.model)
2019-11-28 00:35:54 +08:00
num_batches = len(self.train_loader)
2019-03-20 01:26:08 +08:00
end = time.time()
2019-11-28 00:35:54 +08:00
for batch_idx, data in enumerate(self.train_loader):
2019-03-20 01:26:08 +08:00
data_time.update(time.time() - end)
imgs, pids = self._parse_data_for_train(data)
if self.use_gpu:
imgs = imgs.cuda()
pids = pids.cuda()
2019-12-01 10:35:44 +08:00
2019-03-20 01:26:08 +08:00
self.optimizer.zero_grad()
outputs, features = self.model(imgs)
loss_t = self._compute_loss(self.criterion_t, features, pids)
loss_x = self._compute_loss(self.criterion_x, outputs, pids)
loss = self.weight_t * loss_t + self.weight_x * loss_x
loss.backward()
self.optimizer.step()
batch_time.update(time.time() - end)
losses_t.update(loss_t.item(), pids.size(0))
losses_x.update(loss_x.item(), pids.size(0))
accs.update(metrics.accuracy(outputs, pids)[0].item())
2019-04-19 18:52:02 +08:00
if (batch_idx+1) % print_freq == 0:
2019-05-24 22:36:10 +08:00
# estimate remaining time
2019-12-01 10:35:44 +08:00
eta_seconds = batch_time.avg * (
num_batches - (batch_idx+1) + (max_epoch -
(epoch+1)) * num_batches
)
2019-05-24 22:36:10 +08:00
eta_str = str(datetime.timedelta(seconds=int(eta_seconds)))
2019-12-01 10:35:44 +08:00
print(
'Epoch: [{0}/{1}][{2}/{3}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss_t {loss_t.val:.4f} ({loss_t.avg:.4f})\t'
'Loss_x {loss_x.val:.4f} ({loss_x.avg:.4f})\t'
'Acc {acc.val:.2f} ({acc.avg:.2f})\t'
'Lr {lr:.6f}\t'
'eta {eta}'.format(
epoch + 1,
max_epoch,
batch_idx + 1,
num_batches,
batch_time=batch_time,
data_time=data_time,
loss_t=losses_t,
loss_x=losses_x,
acc=accs,
lr=self.optimizer.param_groups[0]['lr'],
eta=eta_str
2019-05-24 22:36:10 +08:00
)
)
2019-08-23 05:41:21 +08:00
2019-11-28 00:35:54 +08:00
if writer is not None:
2019-12-01 10:35:44 +08:00
n_iter = epoch*num_batches + batch_idx
2019-11-28 00:35:54 +08:00
writer.add_scalar('Train/Time', batch_time.avg, n_iter)
writer.add_scalar('Train/Data', data_time.avg, n_iter)
writer.add_scalar('Train/Loss_t', losses_t.avg, n_iter)
writer.add_scalar('Train/Loss_x', losses_x.avg, n_iter)
writer.add_scalar('Train/Acc', accs.avg, n_iter)
2019-12-01 10:35:44 +08:00
writer.add_scalar(
'Train/Lr', self.optimizer.param_groups[0]['lr'], n_iter
)
2019-03-27 21:01:39 +08:00
end = time.time()
2019-05-24 22:36:10 +08:00
if self.scheduler is not None:
2019-08-23 05:41:21 +08:00
self.scheduler.step()