2019-07-03 13:46:28 +01:00
<!DOCTYPE html>
<!-- [if IE 8]><html class="no - js lt - ie9" lang="en" > <![endif] -->
<!-- [if gt IE 8]><! --> < html class = "no-js" lang = "en" > <!-- <![endif] -->
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width, initial-scale=1.0" >
2019-08-29 17:10:16 +01:00
< title > torchreid.models.osnet — torchreid 1.0.1 documentation< / title >
2019-07-03 13:46:28 +01:00
< script type = "text/javascript" src = "../../../_static/js/modernizr.min.js" > < / script >
< script type = "text/javascript" id = "documentation_options" data-url_root = "../../../" src = "../../../_static/documentation_options.js" > < / script >
< script type = "text/javascript" src = "../../../_static/jquery.js" > < / script >
< script type = "text/javascript" src = "../../../_static/underscore.js" > < / script >
< script type = "text/javascript" src = "../../../_static/doctools.js" > < / script >
< script type = "text/javascript" src = "../../../_static/language_data.js" > < / script >
< script async = "async" type = "text/javascript" src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML" > < / script >
< script type = "text/javascript" src = "../../../_static/js/theme.js" > < / script >
< link rel = "stylesheet" href = "../../../_static/css/theme.css" type = "text/css" / >
< link rel = "stylesheet" href = "../../../_static/pygments.css" type = "text/css" / >
< link rel = "index" title = "Index" href = "../../../genindex.html" / >
< link rel = "search" title = "Search" href = "../../../search.html" / >
< / head >
< body class = "wy-body-for-nav" >
< div class = "wy-grid-for-nav" >
< nav data-toggle = "wy-nav-shift" class = "wy-nav-side" >
< div class = "wy-side-scroll" >
< div class = "wy-side-nav-search" >
< a href = "../../../index.html" class = "icon icon-home" > torchreid
< / a >
< div class = "version" >
2019-08-29 17:10:16 +01:00
1.0.1
2019-07-03 13:46:28 +01:00
< / div >
< div role = "search" >
< form id = "rtd-search-form" class = "wy-form" action = "../../../search.html" method = "get" >
< input type = "text" name = "q" placeholder = "Search docs" / >
< input type = "hidden" name = "check_keywords" value = "yes" / >
< input type = "hidden" name = "area" value = "default" / >
< / form >
< / div >
< / div >
< div class = "wy-menu wy-menu-vertical" data-spy = "affix" role = "navigation" aria-label = "main navigation" >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../user_guide.html" > How-to< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../datasets.html" > Datasets< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../evaluation.html" > Evaluation< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Package Reference< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/data.html" > torchreid.data< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/engine.html" > torchreid.engine< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/losses.html" > torchreid.losses< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/metrics.html" > torchreid.metrics< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/models.html" > torchreid.models< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/optim.html" > torchreid.optim< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/utils.html" > torchreid.utils< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Resources< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../AWESOME_REID.html" > Awesome-ReID< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../MODEL_ZOO.html" > Model Zoo< / a > < / li >
< / ul >
< / div >
< / div >
< / nav >
< section data-toggle = "wy-nav-shift" class = "wy-nav-content-wrap" >
< nav class = "wy-nav-top" aria-label = "top navigation" >
< i data-toggle = "wy-nav-top" class = "fa fa-bars" > < / i >
< a href = "../../../index.html" > torchreid< / a >
< / nav >
< div class = "wy-nav-content" >
< div class = "rst-content" >
< div role = "navigation" aria-label = "breadcrumbs navigation" >
< ul class = "wy-breadcrumbs" >
< li > < a href = "../../../index.html" > Docs< / a > » < / li >
< li > < a href = "../../index.html" > Module code< / a > » < / li >
< li > torchreid.models.osnet< / li >
< li class = "wy-breadcrumbs-aside" >
< / li >
< / ul >
< hr / >
< / div >
< div role = "main" class = "document" itemscope = "itemscope" itemtype = "http://schema.org/Article" >
< div itemprop = "articleBody" >
< h1 > Source code for torchreid.models.osnet< / h1 > < div class = "highlight" > < pre >
< span > < / span > < span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > absolute_import< / span >
< span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > division< / span >
< span class = "n" > __all__< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "s1" > ' osnet_x1_0' < / span > < span class = "p" > ,< / span > < span class = "s1" > ' osnet_x0_75' < / span > < span class = "p" > ,< / span > < span class = "s1" > ' osnet_x0_5' < / span > < span class = "p" > ,< / span > < span class = "s1" > ' osnet_x0_25' < / span > < span class = "p" > ,< / span > < span class = "s1" > ' osnet_ibn_x1_0' < / span > < span class = "p" > ]< / span >
< span class = "kn" > import< / span > < span class = "nn" > torch< / span >
< span class = "kn" > from< / span > < span class = "nn" > torch< / span > < span class = "k" > import< / span > < span class = "n" > nn< / span >
< span class = "kn" > from< / span > < span class = "nn" > torch.nn< / span > < span class = "k" > import< / span > < span class = "n" > functional< / span > < span class = "k" > as< / span > < span class = "n" > F< / span >
< span class = "kn" > import< / span > < span class = "nn" > torchvision< / span >
2019-08-26 13:27:00 +01:00
< span class = "n" > pretrained_urls< / span > < span class = "o" > =< / span > < span class = "p" > {< / span >
< span class = "s1" > ' osnet_x1_0' < / span > < span class = "p" > :< / span > < span class = "s1" > ' https://drive.google.com/uc?id=1LaG1EJpHrxdAxKnSCJ_i0u-nbxSAeiFY' < / span > < span class = "p" > ,< / span >
< span class = "s1" > ' osnet_x0_75' < / span > < span class = "p" > :< / span > < span class = "s1" > ' https://drive.google.com/uc?id=1uwA9fElHOk3ZogwbeY5GkLI6QPTX70Hq' < / span > < span class = "p" > ,< / span >
< span class = "s1" > ' osnet_x0_5' < / span > < span class = "p" > :< / span > < span class = "s1" > ' https://drive.google.com/uc?id=16DGLbZukvVYgINws8u8deSaOqjybZ83i' < / span > < span class = "p" > ,< / span >
< span class = "s1" > ' osnet_x0_25' < / span > < span class = "p" > :< / span > < span class = "s1" > ' https://drive.google.com/uc?id=1rb8UN5ZzPKRc_xvtHlyDh-cSz88YX9hs' < / span > < span class = "p" > ,< / span >
< span class = "s1" > ' osnet_ibn_x1_0' < / span > < span class = "p" > :< / span > < span class = "s1" > ' https://drive.google.com/uc?id=1sr90V6irlYYDd4_4ISU2iruoRG8J__6l' < / span >
< span class = "p" > }< / span >
2019-07-03 13:46:28 +01:00
< span class = "c1" > ##########< / span >
< span class = "c1" > # Basic layers< / span >
< span class = "c1" > ##########< / span >
< span class = "k" > class< / span > < span class = "nc" > ConvLayer< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Convolution layer (conv + bn + relu)." " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > kernel_size< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > ,< / span > < span class = "n" > groups< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > ConvLayer< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > kernel_size< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "n" > stride< / span > < span class = "p" > ,< / span >
< span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "n" > padding< / span > < span class = "p" > ,< / span > < span class = "n" > bias< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > groups< / span > < span class = "o" > =< / span > < span class = "n" > groups< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > IN< / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > InstanceNorm2d< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > affine< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "k" > else< / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > BatchNorm2d< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > ReLU< / span > < span class = "p" > (< / span > < span class = "n" > inplace< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ):< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > x< / span >
< span class = "k" > class< / span > < span class = "nc" > Conv1x1< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " 1x1 convolution + bn + relu." " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > groups< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > Conv1x1< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "n" > stride< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > ,< / span >
< span class = "n" > bias< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > groups< / span > < span class = "o" > =< / span > < span class = "n" > groups< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > BatchNorm2d< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > ReLU< / span > < span class = "p" > (< / span > < span class = "n" > inplace< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ):< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > x< / span >
< span class = "k" > class< / span > < span class = "nc" > Conv1x1Linear< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " 1x1 convolution + bn (w/o non-linearity)." " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > Conv1x1Linear< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "n" > stride< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > ,< / span > < span class = "n" > bias< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > BatchNorm2d< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ):< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > x< / span >
< span class = "k" > class< / span > < span class = "nc" > Conv3x3< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " 3x3 convolution + bn + relu." " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > groups< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > Conv3x3< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "mi" > 3< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "n" > stride< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span >
< span class = "n" > bias< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > groups< / span > < span class = "o" > =< / span > < span class = "n" > groups< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > BatchNorm2d< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > ReLU< / span > < span class = "p" > (< / span > < span class = "n" > inplace< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ):< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > x< / span >
< span class = "k" > class< / span > < span class = "nc" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Lightweight 3x3 convolution.< / span >
< span class = "sd" > 1x1 (linear) + dw 3x3 (nonlinear).< / span >
< span class = "sd" > " " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > LightConv3x3< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv1< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > ,< / span > < span class = "n" > bias< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "mi" > 3< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > bias< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > groups< / span > < span class = "o" > =< / span > < span class = "n" > out_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > BatchNorm2d< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > ReLU< / span > < span class = "p" > (< / span > < span class = "n" > inplace< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ):< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv1< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > bn< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > x< / span >
< span class = "c1" > ##########< / span >
< span class = "c1" > # Building blocks for omni-scale feature learning< / span >
< span class = "c1" > ##########< / span >
< span class = "k" > class< / span > < span class = "nc" > ChannelGate< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " A mini-network that generates channel-wise gates conditioned on input tensor." " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > num_gates< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "n" > return_gates< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > gate_activation< / span > < span class = "o" > =< / span > < span class = "s1" > ' sigmoid' < / span > < span class = "p" > ,< / span > < span class = "n" > reduction< / span > < span class = "o" > =< / span > < span class = "mi" > 16< / span > < span class = "p" > ,< / span > < span class = "n" > layer_norm< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > ChannelGate< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "k" > if< / span > < span class = "n" > num_gates< / span > < span class = "ow" > is< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > num_gates< / span > < span class = "o" > =< / span > < span class = "n" > in_channels< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > return_gates< / span > < span class = "o" > =< / span > < span class = "n" > return_gates< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > global_avgpool< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > AdaptiveAvgPool2d< / span > < span class = "p" > (< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > fc1< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "o" > //< / span > < span class = "n" > reduction< / span > < span class = "p" > ,< / span > < span class = "n" > kernel_size< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > bias< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > norm1< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span >
< span class = "k" > if< / span > < span class = "n" > layer_norm< / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > norm1< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > LayerNorm< / span > < span class = "p" > ((< / span > < span class = "n" > in_channels< / span > < span class = "o" > //< / span > < span class = "n" > reduction< / span > < span class = "p" > ,< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "mi" > 1< / span > < span class = "p" > ))< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > ReLU< / span > < span class = "p" > (< / span > < span class = "n" > inplace< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > fc2< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "o" > //< / span > < span class = "n" > reduction< / span > < span class = "p" > ,< / span > < span class = "n" > num_gates< / span > < span class = "p" > ,< / span > < span class = "n" > kernel_size< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > bias< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > gate_activation< / span > < span class = "o" > ==< / span > < span class = "s1" > ' sigmoid' < / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate_activation< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Sigmoid< / span > < span class = "p" > ()< / span >
< span class = "k" > elif< / span > < span class = "n" > gate_activation< / span > < span class = "o" > ==< / span > < span class = "s1" > ' relu' < / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate_activation< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > ReLU< / span > < span class = "p" > (< / span > < span class = "n" > inplace< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "k" > elif< / span > < span class = "n" > gate_activation< / span > < span class = "o" > ==< / span > < span class = "s1" > ' linear' < / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate_activation< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span >
< span class = "k" > else< / span > < span class = "p" > :< / span >
< span class = "k" > raise< / span > < span class = "ne" > RuntimeError< / span > < span class = "p" > (< / span > < span class = "s2" > " Unknown gate activation: < / span > < span class = "si" > {}< / span > < span class = "s2" > " < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "n" > gate_activation< / span > < span class = "p" > ))< / span >
< span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ):< / span >
< span class = "nb" > input< / span > < span class = "o" > =< / span > < span class = "n" > x< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > global_avgpool< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > fc1< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > norm1< / span > < span class = "ow" > is< / span > < span class = "ow" > not< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > norm1< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > fc2< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate_activation< / span > < span class = "ow" > is< / span > < span class = "ow" > not< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate_activation< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > return_gates< / span > < span class = "p" > :< / span >
< span class = "k" > return< / span > < span class = "n" > x< / span >
< span class = "k" > return< / span > < span class = "nb" > input< / span > < span class = "o" > *< / span > < span class = "n" > x< / span >
< span class = "k" > class< / span > < span class = "nc" > OSBlock< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Omni-scale feature learning block." " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "n" > bottleneck_reduction< / span > < span class = "o" > =< / span > < span class = "mi" > 4< / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "n" > mid_channels< / span > < span class = "o" > =< / span > < span class = "n" > out_channels< / span > < span class = "o" > //< / span > < span class = "n" > bottleneck_reduction< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv1< / span > < span class = "o" > =< / span > < span class = "n" > Conv1x1< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2a< / span > < span class = "o" > =< / span > < span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2b< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Sequential< / span > < span class = "p" > (< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2c< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Sequential< / span > < span class = "p" > (< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2d< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Sequential< / span > < span class = "p" > (< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "n" > LightConv3x3< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ),< / span >
< span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate< / span > < span class = "o" > =< / span > < span class = "n" > ChannelGate< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv3< / span > < span class = "o" > =< / span > < span class = "n" > Conv1x1Linear< / span > < span class = "p" > (< / span > < span class = "n" > mid_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > downsample< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span >
< span class = "k" > if< / span > < span class = "n" > in_channels< / span > < span class = "o" > !=< / span > < span class = "n" > out_channels< / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > downsample< / span > < span class = "o" > =< / span > < span class = "n" > Conv1x1Linear< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span >
< span class = "k" > if< / span > < span class = "n" > IN< / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > InstanceNorm2d< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > affine< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ):< / span >
2019-08-21 23:03:13 +01:00
< span class = "n" > identity< / span > < span class = "o" > =< / span > < span class = "n" > x< / span >
2019-07-03 13:46:28 +01:00
< span class = "n" > x1< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv1< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x2a< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2a< / span > < span class = "p" > (< / span > < span class = "n" > x1< / span > < span class = "p" > )< / span >
< span class = "n" > x2b< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2b< / span > < span class = "p" > (< / span > < span class = "n" > x1< / span > < span class = "p" > )< / span >
< span class = "n" > x2c< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2c< / span > < span class = "p" > (< / span > < span class = "n" > x1< / span > < span class = "p" > )< / span >
< span class = "n" > x2d< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2d< / span > < span class = "p" > (< / span > < span class = "n" > x1< / span > < span class = "p" > )< / span >
< span class = "n" > x2< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate< / span > < span class = "p" > (< / span > < span class = "n" > x2a< / span > < span class = "p" > )< / span > < span class = "o" > +< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate< / span > < span class = "p" > (< / span > < span class = "n" > x2b< / span > < span class = "p" > )< / span > < span class = "o" > +< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate< / span > < span class = "p" > (< / span > < span class = "n" > x2c< / span > < span class = "p" > )< / span > < span class = "o" > +< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > gate< / span > < span class = "p" > (< / span > < span class = "n" > x2d< / span > < span class = "p" > )< / span >
< span class = "n" > x3< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv3< / span > < span class = "p" > (< / span > < span class = "n" > x2< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > downsample< / span > < span class = "ow" > is< / span > < span class = "ow" > not< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
2019-08-21 23:03:13 +01:00
< span class = "n" > identity< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > downsample< / span > < span class = "p" > (< / span > < span class = "n" > identity< / span > < span class = "p" > )< / span >
< span class = "n" > out< / span > < span class = "o" > =< / span > < span class = "n" > x3< / span > < span class = "o" > +< / span > < span class = "n" > identity< / span >
2019-07-03 13:46:28 +01:00
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > IN< / span > < span class = "ow" > is< / span > < span class = "ow" > not< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > out< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > IN< / span > < span class = "p" > (< / span > < span class = "n" > out< / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > F< / span > < span class = "o" > .< / span > < span class = "n" > relu< / span > < span class = "p" > (< / span > < span class = "n" > out< / span > < span class = "p" > )< / span >
< span class = "c1" > ##########< / span >
< span class = "c1" > # Network architecture< / span >
< span class = "c1" > ##########< / span >
< div class = "viewcode-block" id = "OSNet" > < a class = "viewcode-back" href = "../../../pkg/models.html#torchreid.models.osnet.OSNet" > [docs]< / a > < span class = "k" > class< / span > < span class = "nc" > OSNet< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Omni-Scale Network.< / span >
< span class = "sd" > < / span >
< span class = "sd" > Reference:< / span >
2019-08-03 23:16:36 +01:00
< span class = "sd" > - Zhou et al. Omni-Scale Feature Learning for Person Re-Identification. ICCV, 2019.< / span >
2019-07-03 13:46:28 +01:00
< span class = "sd" > " " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > num_classes< / span > < span class = "p" > ,< / span > < span class = "n" > blocks< / span > < span class = "p" > ,< / span > < span class = "n" > layers< / span > < span class = "p" > ,< / span > < span class = "n" > channels< / span > < span class = "p" > ,< / span > < span class = "n" > feature_dim< / span > < span class = "o" > =< / span > < span class = "mi" > 512< / span > < span class = "p" > ,< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "s1" > ' softmax' < / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > OSNet< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "n" > num_blocks< / span > < span class = "o" > =< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "n" > blocks< / span > < span class = "p" > )< / span >
< span class = "k" > assert< / span > < span class = "n" > num_blocks< / span > < span class = "o" > ==< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "n" > layers< / span > < span class = "p" > )< / span >
< span class = "k" > assert< / span > < span class = "n" > num_blocks< / span > < span class = "o" > ==< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "n" > channels< / span > < span class = "p" > )< / span > < span class = "o" > -< / span > < span class = "mi" > 1< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "n" > loss< / span >
< span class = "c1" > # convolutional backbone< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv1< / span > < span class = "o" > =< / span > < span class = "n" > ConvLayer< / span > < span class = "p" > (< / span > < span class = "mi" > 3< / span > < span class = "p" > ,< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 0< / span > < span class = "p" > ],< / span > < span class = "mi" > 7< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 3< / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "n" > IN< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > maxpool< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > MaxPool2d< / span > < span class = "p" > (< / span > < span class = "mi" > 3< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "n" > padding< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _make_layer< / span > < span class = "p" > (< / span > < span class = "n" > blocks< / span > < span class = "p" > [< / span > < span class = "mi" > 0< / span > < span class = "p" > ],< / span > < span class = "n" > layers< / span > < span class = "p" > [< / span > < span class = "mi" > 0< / span > < span class = "p" > ],< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 0< / span > < span class = "p" > ],< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 1< / span > < span class = "p" > ],< / span > < span class = "n" > reduce_spatial_size< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "n" > IN< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv3< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _make_layer< / span > < span class = "p" > (< / span > < span class = "n" > blocks< / span > < span class = "p" > [< / span > < span class = "mi" > 1< / span > < span class = "p" > ],< / span > < span class = "n" > layers< / span > < span class = "p" > [< / span > < span class = "mi" > 1< / span > < span class = "p" > ],< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 1< / span > < span class = "p" > ],< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span > < span class = "n" > reduce_spatial_size< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv4< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _make_layer< / span > < span class = "p" > (< / span > < span class = "n" > blocks< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span > < span class = "n" > layers< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 3< / span > < span class = "p" > ],< / span > < span class = "n" > reduce_spatial_size< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv5< / span > < span class = "o" > =< / span > < span class = "n" > Conv1x1< / span > < span class = "p" > (< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 3< / span > < span class = "p" > ],< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 3< / span > < span class = "p" > ])< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > global_avgpool< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > AdaptiveAvgPool2d< / span > < span class = "p" > (< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span >
< span class = "c1" > # fully connected layer< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > fc< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _construct_fc_layer< / span > < span class = "p" > (< / span > < span class = "n" > feature_dim< / span > < span class = "p" > ,< / span > < span class = "n" > channels< / span > < span class = "p" > [< / span > < span class = "mi" > 3< / span > < span class = "p" > ],< / span > < span class = "n" > dropout_p< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > )< / span >
< span class = "c1" > # identity classification layer< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > classifier< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Linear< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > feature_dim< / span > < span class = "p" > ,< / span > < span class = "n" > num_classes< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > _init_params< / span > < span class = "p" > ()< / span >
< span class = "k" > def< / span > < span class = "nf" > _make_layer< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > block< / span > < span class = "p" > ,< / span > < span class = "n" > layer< / span > < span class = "p" > ,< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > reduce_spatial_size< / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ):< / span >
< span class = "n" > layers< / span > < span class = "o" > =< / span > < span class = "p" > []< / span >
< span class = "n" > layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > block< / span > < span class = "p" > (< / span > < span class = "n" > in_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "n" > IN< / span > < span class = "p" > ))< / span >
< span class = "k" > for< / span > < span class = "n" > i< / span > < span class = "ow" > in< / span > < span class = "nb" > range< / span > < span class = "p" > (< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > layer< / span > < span class = "p" > ):< / span >
< span class = "n" > layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > block< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "n" > IN< / span > < span class = "p" > ))< / span >
< span class = "k" > if< / span > < span class = "n" > reduce_spatial_size< / span > < span class = "p" > :< / span >
< span class = "n" > layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Sequential< / span > < span class = "p" > (< / span >
< span class = "n" > Conv1x1< / span > < span class = "p" > (< / span > < span class = "n" > out_channels< / span > < span class = "p" > ,< / span > < span class = "n" > out_channels< / span > < span class = "p" > ),< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > AvgPool2d< / span > < span class = "p" > (< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "n" > stride< / span > < span class = "o" > =< / span > < span class = "mi" > 2< / span > < span class = "p" > )< / span >
< span class = "p" > )< / span >
< span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Sequential< / span > < span class = "p" > (< / span > < span class = "o" > *< / span > < span class = "n" > layers< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > _construct_fc_layer< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > fc_dims< / span > < span class = "p" > ,< / span > < span class = "n" > input_dim< / span > < span class = "p" > ,< / span > < span class = "n" > dropout_p< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ):< / span >
< span class = "k" > if< / span > < span class = "n" > fc_dims< / span > < span class = "ow" > is< / span > < span class = "kc" > None< / span > < span class = "ow" > or< / span > < span class = "n" > fc_dims< / span > < span class = "o" > < < / span > < span class = "mi" > 0< / span > < span class = "p" > :< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > feature_dim< / span > < span class = "o" > =< / span > < span class = "n" > input_dim< / span >
< span class = "k" > return< / span > < span class = "kc" > None< / span >
< span class = "k" > if< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "n" > fc_dims< / span > < span class = "p" > ,< / span > < span class = "nb" > int< / span > < span class = "p" > ):< / span >
< span class = "n" > fc_dims< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "n" > fc_dims< / span > < span class = "p" > ]< / span >
< span class = "n" > layers< / span > < span class = "o" > =< / span > < span class = "p" > []< / span >
< span class = "k" > for< / span > < span class = "n" > dim< / span > < span class = "ow" > in< / span > < span class = "n" > fc_dims< / span > < span class = "p" > :< / span >
< span class = "n" > layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Linear< / span > < span class = "p" > (< / span > < span class = "n" > input_dim< / span > < span class = "p" > ,< / span > < span class = "n" > dim< / span > < span class = "p" > ))< / span >
< span class = "n" > layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > BatchNorm1d< / span > < span class = "p" > (< / span > < span class = "n" > dim< / span > < span class = "p" > ))< / span >
< span class = "n" > layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > ReLU< / span > < span class = "p" > (< / span > < span class = "n" > inplace< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ))< / span >
< span class = "k" > if< / span > < span class = "n" > dropout_p< / span > < span class = "ow" > is< / span > < span class = "ow" > not< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Dropout< / span > < span class = "p" > (< / span > < span class = "n" > p< / span > < span class = "o" > =< / span > < span class = "n" > dropout_p< / span > < span class = "p" > ))< / span >
< span class = "n" > input_dim< / span > < span class = "o" > =< / span > < span class = "n" > dim< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > feature_dim< / span > < span class = "o" > =< / span > < span class = "n" > fc_dims< / span > < span class = "p" > [< / span > < span class = "o" > -< / span > < span class = "mi" > 1< / span > < span class = "p" > ]< / span >
< span class = "k" > return< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Sequential< / span > < span class = "p" > (< / span > < span class = "o" > *< / span > < span class = "n" > layers< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > _init_params< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ):< / span >
< span class = "k" > for< / span > < span class = "n" > m< / span > < span class = "ow" > in< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > modules< / span > < span class = "p" > ():< / span >
< span class = "k" > if< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "p" > ,< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Conv2d< / span > < span class = "p" > ):< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > init< / span > < span class = "o" > .< / span > < span class = "n" > kaiming_normal_< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > weight< / span > < span class = "p" > ,< / span > < span class = "n" > mode< / span > < span class = "o" > =< / span > < span class = "s1" > ' fan_out' < / span > < span class = "p" > ,< / span > < span class = "n" > nonlinearity< / span > < span class = "o" > =< / span > < span class = "s1" > ' relu' < / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > bias< / span > < span class = "ow" > is< / span > < span class = "ow" > not< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > init< / span > < span class = "o" > .< / span > < span class = "n" > constant_< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > bias< / span > < span class = "p" > ,< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span >
< span class = "k" > elif< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "p" > ,< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > BatchNorm2d< / span > < span class = "p" > ):< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > init< / span > < span class = "o" > .< / span > < span class = "n" > constant_< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > weight< / span > < span class = "p" > ,< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > init< / span > < span class = "o" > .< / span > < span class = "n" > constant_< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > bias< / span > < span class = "p" > ,< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span >
< span class = "k" > elif< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "p" > ,< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > BatchNorm1d< / span > < span class = "p" > ):< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > init< / span > < span class = "o" > .< / span > < span class = "n" > constant_< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > weight< / span > < span class = "p" > ,< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > init< / span > < span class = "o" > .< / span > < span class = "n" > constant_< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > bias< / span > < span class = "p" > ,< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span >
< span class = "k" > elif< / span > < span class = "nb" > isinstance< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "p" > ,< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Linear< / span > < span class = "p" > ):< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > init< / span > < span class = "o" > .< / span > < span class = "n" > normal_< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > weight< / span > < span class = "p" > ,< / span > < span class = "mi" > 0< / span > < span class = "p" > ,< / span > < span class = "mf" > 0.01< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > bias< / span > < span class = "ow" > is< / span > < span class = "ow" > not< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > init< / span > < span class = "o" > .< / span > < span class = "n" > constant_< / span > < span class = "p" > (< / span > < span class = "n" > m< / span > < span class = "o" > .< / span > < span class = "n" > bias< / span > < span class = "p" > ,< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span >
< span class = "k" > def< / span > < span class = "nf" > featuremaps< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ):< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv1< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > maxpool< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv2< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv3< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv4< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > conv5< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > x< / span >
2019-08-05 14:04:14 +01:00
< span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > x< / span > < span class = "p" > ,< / span > < span class = "n" > return_featuremaps< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ):< / span >
2019-07-03 13:46:28 +01:00
< span class = "n" > x< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > featuremaps< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
2019-08-05 14:04:14 +01:00
< span class = "k" > if< / span > < span class = "n" > return_featuremaps< / span > < span class = "p" > :< / span >
2019-08-03 23:16:36 +01:00
< span class = "k" > return< / span > < span class = "n" > x< / span >
2019-07-03 13:46:28 +01:00
< span class = "n" > v< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > global_avgpool< / span > < span class = "p" > (< / span > < span class = "n" > x< / span > < span class = "p" > )< / span >
< span class = "n" > v< / span > < span class = "o" > =< / span > < span class = "n" > v< / span > < span class = "o" > .< / span > < span class = "n" > view< / span > < span class = "p" > (< / span > < span class = "n" > v< / span > < span class = "o" > .< / span > < span class = "n" > size< / span > < span class = "p" > (< / span > < span class = "mi" > 0< / span > < span class = "p" > ),< / span > < span class = "o" > -< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > fc< / span > < span class = "ow" > is< / span > < span class = "ow" > not< / span > < span class = "kc" > None< / span > < span class = "p" > :< / span >
< span class = "n" > v< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > fc< / span > < span class = "p" > (< / span > < span class = "n" > v< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "ow" > not< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > training< / span > < span class = "p" > :< / span >
< span class = "k" > return< / span > < span class = "n" > v< / span >
< span class = "n" > y< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > classifier< / span > < span class = "p" > (< / span > < span class = "n" > v< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > loss< / span > < span class = "o" > ==< / span > < span class = "s1" > ' softmax' < / span > < span class = "p" > :< / span >
< span class = "k" > return< / span > < span class = "n" > y< / span >
< span class = "k" > elif< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > loss< / span > < span class = "o" > ==< / span > < span class = "s1" > ' triplet' < / span > < span class = "p" > :< / span >
< span class = "k" > return< / span > < span class = "n" > y< / span > < span class = "p" > ,< / span > < span class = "n" > v< / span >
< span class = "k" > else< / span > < span class = "p" > :< / span >
< span class = "k" > raise< / span > < span class = "ne" > KeyError< / span > < span class = "p" > (< / span > < span class = "s2" > " Unsupported loss: < / span > < span class = "si" > {}< / span > < span class = "s2" > " < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > loss< / span > < span class = "p" > ))< / span > < / div >
2019-08-26 13:27:00 +01:00
< span class = "k" > def< / span > < span class = "nf" > init_pretrained_weights< / span > < span class = "p" > (< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > key< / span > < span class = "o" > =< / span > < span class = "s1" > ' ' < / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Initializes model with pretrained weights.< / span >
< span class = "sd" > < / span >
< span class = "sd" > Layers that don' t match with pretrained layers in name or size are kept unchanged.< / span >
< span class = "sd" > " " " < / span >
< span class = "kn" > import< / span > < span class = "nn" > os< / span >
< span class = "kn" > import< / span > < span class = "nn" > errno< / span >
< span class = "kn" > import< / span > < span class = "nn" > gdown< / span >
< span class = "kn" > from< / span > < span class = "nn" > collections< / span > < span class = "k" > import< / span > < span class = "n" > OrderedDict< / span >
< span class = "k" > def< / span > < span class = "nf" > _get_torch_home< / span > < span class = "p" > ():< / span >
< span class = "n" > ENV_TORCH_HOME< / span > < span class = "o" > =< / span > < span class = "s1" > ' TORCH_HOME' < / span >
< span class = "n" > ENV_XDG_CACHE_HOME< / span > < span class = "o" > =< / span > < span class = "s1" > ' XDG_CACHE_HOME' < / span >
< span class = "n" > DEFAULT_CACHE_DIR< / span > < span class = "o" > =< / span > < span class = "s1" > ' ~/.cache' < / span >
< span class = "n" > torch_home< / span > < span class = "o" > =< / span > < span class = "n" > os< / span > < span class = "o" > .< / span > < span class = "n" > path< / span > < span class = "o" > .< / span > < span class = "n" > expanduser< / span > < span class = "p" > (< / span >
< span class = "n" > os< / span > < span class = "o" > .< / span > < span class = "n" > getenv< / span > < span class = "p" > (< / span > < span class = "n" > ENV_TORCH_HOME< / span > < span class = "p" > ,< / span >
< span class = "n" > os< / span > < span class = "o" > .< / span > < span class = "n" > path< / span > < span class = "o" > .< / span > < span class = "n" > join< / span > < span class = "p" > (< / span > < span class = "n" > os< / span > < span class = "o" > .< / span > < span class = "n" > getenv< / span > < span class = "p" > (< / span > < span class = "n" > ENV_XDG_CACHE_HOME< / span > < span class = "p" > ,< / span > < span class = "n" > DEFAULT_CACHE_DIR< / span > < span class = "p" > ),< / span > < span class = "s1" > ' torch' < / span > < span class = "p" > )))< / span >
< span class = "k" > return< / span > < span class = "n" > torch_home< / span >
< span class = "n" > torch_home< / span > < span class = "o" > =< / span > < span class = "n" > _get_torch_home< / span > < span class = "p" > ()< / span >
< span class = "n" > model_dir< / span > < span class = "o" > =< / span > < span class = "n" > os< / span > < span class = "o" > .< / span > < span class = "n" > path< / span > < span class = "o" > .< / span > < span class = "n" > join< / span > < span class = "p" > (< / span > < span class = "n" > torch_home< / span > < span class = "p" > ,< / span > < span class = "s1" > ' checkpoints' < / span > < span class = "p" > )< / span >
< span class = "k" > try< / span > < span class = "p" > :< / span >
< span class = "n" > os< / span > < span class = "o" > .< / span > < span class = "n" > makedirs< / span > < span class = "p" > (< / span > < span class = "n" > model_dir< / span > < span class = "p" > )< / span >
< span class = "k" > except< / span > < span class = "ne" > OSError< / span > < span class = "k" > as< / span > < span class = "n" > e< / span > < span class = "p" > :< / span >
< span class = "k" > if< / span > < span class = "n" > e< / span > < span class = "o" > .< / span > < span class = "n" > errno< / span > < span class = "o" > ==< / span > < span class = "n" > errno< / span > < span class = "o" > .< / span > < span class = "n" > EEXIST< / span > < span class = "p" > :< / span >
< span class = "c1" > # Directory already exists, ignore.< / span >
< span class = "k" > pass< / span >
< span class = "k" > else< / span > < span class = "p" > :< / span >
< span class = "c1" > # Unexpected OSError, re-raise.< / span >
< span class = "k" > raise< / span >
< span class = "n" > filename< / span > < span class = "o" > =< / span > < span class = "n" > key< / span > < span class = "o" > +< / span > < span class = "s1" > ' _imagenet.pth' < / span >
< span class = "n" > cached_file< / span > < span class = "o" > =< / span > < span class = "n" > os< / span > < span class = "o" > .< / span > < span class = "n" > path< / span > < span class = "o" > .< / span > < span class = "n" > join< / span > < span class = "p" > (< / span > < span class = "n" > model_dir< / span > < span class = "p" > ,< / span > < span class = "n" > filename< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "ow" > not< / span > < span class = "n" > os< / span > < span class = "o" > .< / span > < span class = "n" > path< / span > < span class = "o" > .< / span > < span class = "n" > exists< / span > < span class = "p" > (< / span > < span class = "n" > cached_file< / span > < span class = "p" > ):< / span >
< span class = "n" > gdown< / span > < span class = "o" > .< / span > < span class = "n" > download< / span > < span class = "p" > (< / span > < span class = "n" > pretrained_urls< / span > < span class = "p" > [< / span > < span class = "n" > key< / span > < span class = "p" > ],< / span > < span class = "n" > cached_file< / span > < span class = "p" > ,< / span > < span class = "n" > quiet< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > )< / span >
< span class = "n" > state_dict< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > load< / span > < span class = "p" > (< / span > < span class = "n" > cached_file< / span > < span class = "p" > )< / span >
< span class = "n" > model_dict< / span > < span class = "o" > =< / span > < span class = "n" > model< / span > < span class = "o" > .< / span > < span class = "n" > state_dict< / span > < span class = "p" > ()< / span >
< span class = "n" > new_state_dict< / span > < span class = "o" > =< / span > < span class = "n" > OrderedDict< / span > < span class = "p" > ()< / span >
< span class = "n" > matched_layers< / span > < span class = "p" > ,< / span > < span class = "n" > discarded_layers< / span > < span class = "o" > =< / span > < span class = "p" > [],< / span > < span class = "p" > []< / span >
< span class = "k" > for< / span > < span class = "n" > k< / span > < span class = "p" > ,< / span > < span class = "n" > v< / span > < span class = "ow" > in< / span > < span class = "n" > state_dict< / span > < span class = "o" > .< / span > < span class = "n" > items< / span > < span class = "p" > ():< / span >
< span class = "k" > if< / span > < span class = "n" > k< / span > < span class = "o" > .< / span > < span class = "n" > startswith< / span > < span class = "p" > (< / span > < span class = "s1" > ' module.' < / span > < span class = "p" > ):< / span >
< span class = "n" > k< / span > < span class = "o" > =< / span > < span class = "n" > k< / span > < span class = "p" > [< / span > < span class = "mi" > 7< / span > < span class = "p" > :]< / span > < span class = "c1" > # discard module.< / span >
< span class = "k" > if< / span > < span class = "n" > k< / span > < span class = "ow" > in< / span > < span class = "n" > model_dict< / span > < span class = "ow" > and< / span > < span class = "n" > model_dict< / span > < span class = "p" > [< / span > < span class = "n" > k< / span > < span class = "p" > ]< / span > < span class = "o" > .< / span > < span class = "n" > size< / span > < span class = "p" > ()< / span > < span class = "o" > ==< / span > < span class = "n" > v< / span > < span class = "o" > .< / span > < span class = "n" > size< / span > < span class = "p" > ():< / span >
< span class = "n" > new_state_dict< / span > < span class = "p" > [< / span > < span class = "n" > k< / span > < span class = "p" > ]< / span > < span class = "o" > =< / span > < span class = "n" > v< / span >
< span class = "n" > matched_layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > k< / span > < span class = "p" > )< / span >
< span class = "k" > else< / span > < span class = "p" > :< / span >
< span class = "n" > discarded_layers< / span > < span class = "o" > .< / span > < span class = "n" > append< / span > < span class = "p" > (< / span > < span class = "n" > k< / span > < span class = "p" > )< / span >
< span class = "n" > model_dict< / span > < span class = "o" > .< / span > < span class = "n" > update< / span > < span class = "p" > (< / span > < span class = "n" > new_state_dict< / span > < span class = "p" > )< / span >
< span class = "n" > model< / span > < span class = "o" > .< / span > < span class = "n" > load_state_dict< / span > < span class = "p" > (< / span > < span class = "n" > model_dict< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "n" > matched_layers< / span > < span class = "p" > )< / span > < span class = "o" > ==< / span > < span class = "mi" > 0< / span > < span class = "p" > :< / span >
< span class = "n" > warnings< / span > < span class = "o" > .< / span > < span class = "n" > warn< / span > < span class = "p" > (< / span >
< span class = "s1" > ' The pretrained weights from " < / span > < span class = "si" > {}< / span > < span class = "s1" > " cannot be loaded, ' < / span >
< span class = "s1" > ' please check the key names manually ' < / span >
< span class = "s1" > ' (** ignored and continue **)' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "n" > cached_file< / span > < span class = "p" > ))< / span >
< span class = "k" > else< / span > < span class = "p" > :< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' Successfully loaded imagenet pretrained weights from " < / span > < span class = "si" > {}< / span > < span class = "s1" > " ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "n" > cached_file< / span > < span class = "p" > ))< / span >
< span class = "k" > if< / span > < span class = "nb" > len< / span > < span class = "p" > (< / span > < span class = "n" > discarded_layers< / span > < span class = "p" > )< / span > < span class = "o" > > < / span > < span class = "mi" > 0< / span > < span class = "p" > :< / span >
< span class = "nb" > print< / span > < span class = "p" > (< / span > < span class = "s1" > ' ** The following layers are discarded ' < / span >
< span class = "s1" > ' due to unmatched keys or layer size: < / span > < span class = "si" > {}< / span > < span class = "s1" > ' < / span > < span class = "o" > .< / span > < span class = "n" > format< / span > < span class = "p" > (< / span > < span class = "n" > discarded_layers< / span > < span class = "p" > ))< / span >
2019-07-03 13:46:28 +01:00
< span class = "c1" > ##########< / span >
< span class = "c1" > # Instantiation< / span >
< span class = "c1" > ##########< / span >
2019-08-26 13:27:00 +01:00
< span class = "k" > def< / span > < span class = "nf" > osnet_x1_0< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "o" > =< / span > < span class = "mi" > 1000< / span > < span class = "p" > ,< / span > < span class = "n" > pretrained< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "s1" > ' softmax' < / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > ):< / span >
2019-07-03 13:46:28 +01:00
< span class = "c1" > # standard size (width x1.0)< / span >
2019-08-26 13:27:00 +01:00
< span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > OSNet< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "p" > ,< / span > < span class = "n" > blocks< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ],< / span > < span class = "n" > layers< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span >
< span class = "n" > channels< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 64< / span > < span class = "p" > ,< / span > < span class = "mi" > 256< / span > < span class = "p" > ,< / span > < span class = "mi" > 384< / span > < span class = "p" > ,< / span > < span class = "mi" > 512< / span > < span class = "p" > ],< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "n" > loss< / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > pretrained< / span > < span class = "p" > :< / span >
< span class = "n" > init_pretrained_weights< / span > < span class = "p" > (< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > key< / span > < span class = "o" > =< / span > < span class = "s1" > ' osnet_x1_0' < / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > model< / span >
2019-07-03 13:46:28 +01:00
2019-08-26 13:27:00 +01:00
< span class = "k" > def< / span > < span class = "nf" > osnet_x0_75< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "o" > =< / span > < span class = "mi" > 1000< / span > < span class = "p" > ,< / span > < span class = "n" > pretrained< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "s1" > ' softmax' < / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > ):< / span >
2019-07-03 13:46:28 +01:00
< span class = "c1" > # medium size (width x0.75)< / span >
2019-08-26 13:27:00 +01:00
< span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > OSNet< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "p" > ,< / span > < span class = "n" > blocks< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ],< / span > < span class = "n" > layers< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span >
< span class = "n" > channels< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 48< / span > < span class = "p" > ,< / span > < span class = "mi" > 192< / span > < span class = "p" > ,< / span > < span class = "mi" > 288< / span > < span class = "p" > ,< / span > < span class = "mi" > 384< / span > < span class = "p" > ],< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "n" > loss< / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > pretrained< / span > < span class = "p" > :< / span >
< span class = "n" > init_pretrained_weights< / span > < span class = "p" > (< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > key< / span > < span class = "o" > =< / span > < span class = "s1" > ' osnet_x0_75' < / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > model< / span >
2019-07-03 13:46:28 +01:00
2019-08-26 13:27:00 +01:00
< span class = "k" > def< / span > < span class = "nf" > osnet_x0_5< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "o" > =< / span > < span class = "mi" > 1000< / span > < span class = "p" > ,< / span > < span class = "n" > pretrained< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "s1" > ' softmax' < / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > ):< / span >
2019-07-03 13:46:28 +01:00
< span class = "c1" > # tiny size (width x0.5)< / span >
2019-08-26 13:27:00 +01:00
< span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > OSNet< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "p" > ,< / span > < span class = "n" > blocks< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ],< / span > < span class = "n" > layers< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span >
< span class = "n" > channels< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 32< / span > < span class = "p" > ,< / span > < span class = "mi" > 128< / span > < span class = "p" > ,< / span > < span class = "mi" > 192< / span > < span class = "p" > ,< / span > < span class = "mi" > 256< / span > < span class = "p" > ],< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "n" > loss< / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > pretrained< / span > < span class = "p" > :< / span >
< span class = "n" > init_pretrained_weights< / span > < span class = "p" > (< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > key< / span > < span class = "o" > =< / span > < span class = "s1" > ' osnet_x0_5' < / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > model< / span >
2019-07-03 13:46:28 +01:00
2019-08-26 13:27:00 +01:00
< span class = "k" > def< / span > < span class = "nf" > osnet_x0_25< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "o" > =< / span > < span class = "mi" > 1000< / span > < span class = "p" > ,< / span > < span class = "n" > pretrained< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "s1" > ' softmax' < / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > ):< / span >
2019-07-03 13:46:28 +01:00
< span class = "c1" > # very tiny size (width x0.25)< / span >
2019-08-26 13:27:00 +01:00
< span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > OSNet< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "p" > ,< / span > < span class = "n" > blocks< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ],< / span > < span class = "n" > layers< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span >
< span class = "n" > channels< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 16< / span > < span class = "p" > ,< / span > < span class = "mi" > 64< / span > < span class = "p" > ,< / span > < span class = "mi" > 96< / span > < span class = "p" > ,< / span > < span class = "mi" > 128< / span > < span class = "p" > ],< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "n" > loss< / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > pretrained< / span > < span class = "p" > :< / span >
< span class = "n" > init_pretrained_weights< / span > < span class = "p" > (< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > key< / span > < span class = "o" > =< / span > < span class = "s1" > ' osnet_x0_25' < / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > model< / span >
2019-07-03 13:46:28 +01:00
2019-08-26 13:27:00 +01:00
< span class = "k" > def< / span > < span class = "nf" > osnet_ibn_x1_0< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "o" > =< / span > < span class = "mi" > 1000< / span > < span class = "p" > ,< / span > < span class = "n" > pretrained< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "s1" > ' softmax' < / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > ):< / span >
2019-07-03 13:46:28 +01:00
< span class = "c1" > # standard size (width x1.0) + IBN layer< / span >
< span class = "c1" > # Ref: Pan et al. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net. ECCV, 2018.< / span >
2019-08-26 13:27:00 +01:00
< span class = "n" > model< / span > < span class = "o" > =< / span > < span class = "n" > OSNet< / span > < span class = "p" > (< / span > < span class = "n" > num_classes< / span > < span class = "p" > ,< / span > < span class = "n" > blocks< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ,< / span > < span class = "n" > OSBlock< / span > < span class = "p" > ],< / span > < span class = "n" > layers< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ,< / span > < span class = "mi" > 2< / span > < span class = "p" > ],< / span >
< span class = "n" > channels< / span > < span class = "o" > =< / span > < span class = "p" > [< / span > < span class = "mi" > 64< / span > < span class = "p" > ,< / span > < span class = "mi" > 256< / span > < span class = "p" > ,< / span > < span class = "mi" > 384< / span > < span class = "p" > ,< / span > < span class = "mi" > 512< / span > < span class = "p" > ],< / span > < span class = "n" > loss< / span > < span class = "o" > =< / span > < span class = "n" > loss< / span > < span class = "p" > ,< / span > < span class = "n" > IN< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "o" > **< / span > < span class = "n" > kwargs< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "n" > pretrained< / span > < span class = "p" > :< / span >
< span class = "n" > init_pretrained_weights< / span > < span class = "p" > (< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > key< / span > < span class = "o" > =< / span > < span class = "s1" > ' osnet_ibn_x1_0' < / span > < span class = "p" > )< / span >
< span class = "k" > return< / span > < span class = "n" > model< / span >
2019-07-03 13:46:28 +01:00
< / pre > < / div >
< / div >
< / div >
< footer >
< hr / >
< div role = "contentinfo" >
< p >
© Copyright 2019, Kaiyang Zhou
< / p >
< / div >
Built with < a href = "http://sphinx-doc.org/" > Sphinx< / a > using a < a href = "https://github.com/rtfd/sphinx_rtd_theme" > theme< / a > provided by < a href = "https://readthedocs.org" > Read the Docs< / a > .
< / footer >
< / div >
< / div >
< / section >
< / div >
< script type = "text/javascript" >
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
< / script >
< / body >
< / html >