2019-03-25 01:22:43 +08:00
<!DOCTYPE html>
<!-- [if IE 8]><html class="no - js lt - ie9" lang="en" > <![endif] -->
<!-- [if gt IE 8]><! --> < html class = "no-js" lang = "en" > <!-- <![endif] -->
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width, initial-scale=1.0" >
2019-04-18 19:12:17 +08:00
< title > torchreid.losses.cross_entropy_loss — torchreid 0.7.3 documentation< / title >
2019-03-25 01:22:43 +08:00
< script type = "text/javascript" src = "../../../_static/js/modernizr.min.js" > < / script >
< script type = "text/javascript" id = "documentation_options" data-url_root = "../../../" src = "../../../_static/documentation_options.js" > < / script >
< script type = "text/javascript" src = "../../../_static/jquery.js" > < / script >
< script type = "text/javascript" src = "../../../_static/underscore.js" > < / script >
< script type = "text/javascript" src = "../../../_static/doctools.js" > < / script >
< script type = "text/javascript" src = "../../../_static/language_data.js" > < / script >
< script async = "async" type = "text/javascript" src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML" > < / script >
< script type = "text/javascript" src = "../../../_static/js/theme.js" > < / script >
< link rel = "stylesheet" href = "../../../_static/css/theme.css" type = "text/css" / >
< link rel = "stylesheet" href = "../../../_static/pygments.css" type = "text/css" / >
< link rel = "index" title = "Index" href = "../../../genindex.html" / >
< link rel = "search" title = "Search" href = "../../../search.html" / >
< / head >
< body class = "wy-body-for-nav" >
< div class = "wy-grid-for-nav" >
< nav data-toggle = "wy-nav-shift" class = "wy-nav-side" >
< div class = "wy-side-scroll" >
< div class = "wy-side-nav-search" >
< a href = "../../../index.html" class = "icon icon-home" > torchreid
< / a >
< div class = "version" >
2019-04-18 19:12:17 +08:00
0.7.3
2019-03-25 01:22:43 +08:00
< / div >
< div role = "search" >
< form id = "rtd-search-form" class = "wy-form" action = "../../../search.html" method = "get" >
< input type = "text" name = "q" placeholder = "Search docs" / >
< input type = "hidden" name = "check_keywords" value = "yes" / >
< input type = "hidden" name = "area" value = "default" / >
< / form >
< / div >
< / div >
< div class = "wy-menu wy-menu-vertical" data-spy = "affix" role = "navigation" aria-label = "main navigation" >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../user_guide.html" > How-to< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../datasets.html" > Datasets< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../evaluation.html" > Evaluation< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Package Reference< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/data.html" > torchreid.data< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/engine.html" > torchreid.engine< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/losses.html" > torchreid.losses< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/metrics.html" > torchreid.metrics< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/models.html" > torchreid.models< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/optim.html" > torchreid.optim< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../pkg/utils.html" > torchreid.utils< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Resources< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../AWESOME_REID.html" > Awesome-ReID< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../MODEL_ZOO.html" > Model Zoo< / a > < / li >
< / ul >
< / div >
< / div >
< / nav >
< section data-toggle = "wy-nav-shift" class = "wy-nav-content-wrap" >
< nav class = "wy-nav-top" aria-label = "top navigation" >
< i data-toggle = "wy-nav-top" class = "fa fa-bars" > < / i >
< a href = "../../../index.html" > torchreid< / a >
< / nav >
< div class = "wy-nav-content" >
< div class = "rst-content" >
< div role = "navigation" aria-label = "breadcrumbs navigation" >
< ul class = "wy-breadcrumbs" >
< li > < a href = "../../../index.html" > Docs< / a > » < / li >
< li > < a href = "../../index.html" > Module code< / a > » < / li >
< li > torchreid.losses.cross_entropy_loss< / li >
< li class = "wy-breadcrumbs-aside" >
< / li >
< / ul >
< hr / >
< / div >
< div role = "main" class = "document" itemscope = "itemscope" itemtype = "http://schema.org/Article" >
< div itemprop = "articleBody" >
< h1 > Source code for torchreid.losses.cross_entropy_loss< / h1 > < div class = "highlight" > < pre >
< span > < / span > < span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > absolute_import< / span >
< span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > division< / span >
< span class = "kn" > import< / span > < span class = "nn" > torch< / span >
< span class = "kn" > import< / span > < span class = "nn" > torch.nn< / span > < span class = "k" > as< / span > < span class = "nn" > nn< / span >
< div class = "viewcode-block" id = "CrossEntropyLoss" > < a class = "viewcode-back" href = "../../../pkg/losses.html#torchreid.losses.cross_entropy_loss.CrossEntropyLoss" > [docs]< / a > < span class = "k" > class< / span > < span class = "nc" > CrossEntropyLoss< / span > < span class = "p" > (< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > Module< / span > < span class = "p" > ):< / span >
< span class = "sa" > r< / span > < span class = "sd" > " " " Cross entropy loss with label smoothing regularizer.< / span >
< span class = "sd" > < / span >
< span class = "sd" > Reference:< / span >
< span class = "sd" > Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.< / span >
< span class = "sd" > With label smoothing, the label :math:`y` for a class is computed by< / span >
< span class = "sd" > < / span >
< span class = "sd" > .. math::< / span >
< span class = "sd" > \begin{equation}< / span >
< span class = "sd" > (1 - \epsilon) \times y + \frac{\epsilon}{K},< / span >
< span class = "sd" > \end{equation}< / span >
< span class = "sd" > where :math:`K` denotes the number of classes and :math:`\epsilon` is a weight. When< / span >
< span class = "sd" > :math:`\epsilon = 0`, the loss function reduces to the normal cross entropy.< / span >
< span class = "sd" > < / span >
< span class = "sd" > Args:< / span >
< span class = "sd" > num_classes (int): number of classes.< / span >
< span class = "sd" > epsilon (float, optional): weight. Default is 0.1.< / span >
< span class = "sd" > use_gpu (bool, optional): whether to use gpu devices. Default is True.< / span >
< span class = "sd" > label_smooth (bool, optional): whether to apply label smoothing. Default is True.< / span >
< span class = "sd" > " " " < / span >
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > num_classes< / span > < span class = "p" > ,< / span > < span class = "n" > epsilon< / span > < span class = "o" > =< / span > < span class = "mf" > 0.1< / span > < span class = "p" > ,< / span > < span class = "n" > use_gpu< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > label_smooth< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > CrossEntropyLoss< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > ()< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > num_classes< / span > < span class = "o" > =< / span > < span class = "n" > num_classes< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > epsilon< / span > < span class = "o" > =< / span > < span class = "n" > epsilon< / span > < span class = "k" > if< / span > < span class = "n" > label_smooth< / span > < span class = "k" > else< / span > < span class = "mi" > 0< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "o" > =< / span > < span class = "n" > use_gpu< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > logsoftmax< / span > < span class = "o" > =< / span > < span class = "n" > nn< / span > < span class = "o" > .< / span > < span class = "n" > LogSoftmax< / span > < span class = "p" > (< / span > < span class = "n" > dim< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span >
< div class = "viewcode-block" id = "CrossEntropyLoss.forward" > < a class = "viewcode-back" href = "../../../pkg/losses.html#torchreid.losses.cross_entropy_loss.CrossEntropyLoss.forward" > [docs]< / a > < span class = "k" > def< / span > < span class = "nf" > forward< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > inputs< / span > < span class = "p" > ,< / span > < span class = "n" > targets< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " < / span >
< span class = "sd" > Args:< / span >
< span class = "sd" > inputs (torch.Tensor): prediction matrix (before softmax) with< / span >
< span class = "sd" > shape (batch_size, num_classes).< / span >
2019-04-17 16:14:41 +08:00
< span class = "sd" > targets (torch.LongTensor): ground truth labels with shape (batch_size).< / span >
< span class = "sd" > Each position contains the label index.< / span >
2019-03-25 01:22:43 +08:00
< span class = "sd" > " " " < / span >
< span class = "n" > log_probs< / span > < span class = "o" > =< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > logsoftmax< / span > < span class = "p" > (< / span > < span class = "n" > inputs< / span > < span class = "p" > )< / span >
< span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > zeros< / span > < span class = "p" > (< / span > < span class = "n" > log_probs< / span > < span class = "o" > .< / span > < span class = "n" > size< / span > < span class = "p" > ())< / span > < span class = "o" > .< / span > < span class = "n" > scatter_< / span > < span class = "p" > (< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > targets< / span > < span class = "o" > .< / span > < span class = "n" > unsqueeze< / span > < span class = "p" > (< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "n" > data< / span > < span class = "o" > .< / span > < span class = "n" > cpu< / span > < span class = "p" > (),< / span > < span class = "mi" > 1< / span > < span class = "p" > )< / span >
< span class = "k" > if< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > use_gpu< / span > < span class = "p" > :< / span > < span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "n" > targets< / span > < span class = "o" > .< / span > < span class = "n" > cuda< / span > < span class = "p" > ()< / span >
< span class = "n" > targets< / span > < span class = "o" > =< / span > < span class = "p" > (< / span > < span class = "mi" > 1< / span > < span class = "o" > -< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > epsilon< / span > < span class = "p" > )< / span > < span class = "o" > *< / span > < span class = "n" > targets< / span > < span class = "o" > +< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > epsilon< / span > < span class = "o" > /< / span > < span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > num_classes< / span >
< span class = "k" > return< / span > < span class = "p" > (< / span > < span class = "o" > -< / span > < span class = "n" > targets< / span > < span class = "o" > *< / span > < span class = "n" > log_probs< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "n" > mean< / span > < span class = "p" > (< / span > < span class = "mi" > 0< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "n" > sum< / span > < span class = "p" > ()< / span > < / div > < / div >
< / pre > < / div >
< / div >
< / div >
< footer >
< hr / >
< div role = "contentinfo" >
< p >
© Copyright 2019, Kaiyang Zhou
< / p >
< / div >
Built with < a href = "http://sphinx-doc.org/" > Sphinx< / a > using a < a href = "https://github.com/rtfd/sphinx_rtd_theme" > theme< / a > provided by < a href = "https://readthedocs.org" > Read the Docs< / a > .
< / footer >
< / div >
< / div >
< / section >
< / div >
< script type = "text/javascript" >
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
< / script >
< / body >
< / html >