64 lines
1.9 KiB
Python
64 lines
1.9 KiB
Python
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
|
||
|
from collections import defaultdict
|
||
|
import numpy as np
|
||
|
import copy
|
||
|
import random
|
||
|
|
||
|
import torch
|
||
|
from torch.utils.data.sampler import Sampler
|
||
|
|
||
|
|
||
|
class RandomIdentitySampler(Sampler):
|
||
|
"""
|
||
|
Randomly sample N identities, then for each identity,
|
||
|
randomly sample K instances, therefore batch size is N*K.
|
||
|
|
||
|
Args:
|
||
|
- data_source (Dataset): dataset to sample from.
|
||
|
- num_instances (int): number of instances per identity.
|
||
|
"""
|
||
|
def __init__(self, data_source, num_instances=4):
|
||
|
self.data_source = data_source
|
||
|
self.num_instances = num_instances
|
||
|
self.index_dic = defaultdict(list)
|
||
|
for index, (_, pid, _) in enumerate(data_source):
|
||
|
self.index_dic[pid].append(index)
|
||
|
self.pids = list(self.index_dic.keys())
|
||
|
self.num_identities = len(self.pids)
|
||
|
|
||
|
# compute number of examples in an epoch
|
||
|
self.length = 0
|
||
|
for pid in self.pids:
|
||
|
idxs = self.index_dic[pid]
|
||
|
num = len(idxs)
|
||
|
if num < self.num_instances:
|
||
|
num = self.num_instances
|
||
|
self.length += num - num % self.num_instances
|
||
|
|
||
|
def __iter__(self):
|
||
|
list_container = []
|
||
|
|
||
|
for pid in self.pids:
|
||
|
idxs = copy.deepcopy(self.index_dic[pid])
|
||
|
if len(idxs) < self.num_instances:
|
||
|
idxs = np.random.choice(idxs, size=self.num_instances, replace=True)
|
||
|
random.shuffle(idxs)
|
||
|
batch_idxs = []
|
||
|
for idx in idxs:
|
||
|
batch_idxs.append(idx)
|
||
|
if len(batch_idxs) == self.num_instances:
|
||
|
list_container.append(batch_idxs)
|
||
|
batch_idxs = []
|
||
|
|
||
|
random.shuffle(list_container)
|
||
|
|
||
|
ret = []
|
||
|
for batch_idxs in list_container:
|
||
|
ret.extend(batch_idxs)
|
||
|
|
||
|
return iter(ret)
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.length
|