deep-person-reid/torchreid/samplers.py

64 lines
1.9 KiB
Python
Raw Normal View History

2018-07-04 17:32:43 +08:00
from __future__ import absolute_import
from __future__ import division
2018-07-02 17:17:14 +08:00
2018-03-12 21:53:08 +08:00
from collections import defaultdict
import numpy as np
2018-07-02 17:17:14 +08:00
import copy
import random
2018-03-12 05:17:48 +08:00
import torch
2018-04-26 21:11:43 +08:00
from torch.utils.data.sampler import Sampler
2018-03-12 05:17:48 +08:00
2018-07-02 17:17:14 +08:00
2018-07-02 18:56:47 +08:00
class RandomIdentitySampler(Sampler):
"""
Randomly sample N identities, then for each identity,
randomly sample K instances, therefore batch size is N*K.
Args:
- data_source (Dataset): dataset to sample from.
- num_instances (int): number of instances per identity.
"""
2018-07-02 17:17:14 +08:00
def __init__(self, data_source, num_instances=4):
self.data_source = data_source
self.num_instances = num_instances
self.index_dic = defaultdict(list)
for index, (_, pid, _) in enumerate(data_source):
self.index_dic[pid].append(index)
self.pids = list(self.index_dic.keys())
self.num_identities = len(self.pids)
# compute number of examples in an epoch
self.length = 0
for pid in self.pids:
idxs = self.index_dic[pid]
num = len(idxs)
if num < self.num_instances:
num = self.num_instances
self.length += num - num % self.num_instances
def __iter__(self):
list_container = []
for pid in self.pids:
idxs = copy.deepcopy(self.index_dic[pid])
if len(idxs) < self.num_instances:
idxs = np.random.choice(idxs, size=self.num_instances, replace=True)
random.shuffle(idxs)
batch_idxs = []
for idx in idxs:
batch_idxs.append(idx)
if len(batch_idxs) == self.num_instances:
list_container.append(batch_idxs)
batch_idxs = []
random.shuffle(list_container)
ret = []
for batch_idxs in list_container:
ret.extend(batch_idxs)
return iter(ret)
def __len__(self):
return self.length