deep-person-reid/torchreid/data/sampler.py

105 lines
3.6 KiB
Python
Raw Normal View History

2019-12-01 10:35:44 +08:00
from __future__ import division, absolute_import
2019-03-21 20:59:54 +08:00
import copy
2019-12-01 10:35:44 +08:00
import numpy as np
2019-03-21 20:59:54 +08:00
import random
2019-12-01 10:35:44 +08:00
from collections import defaultdict
2019-11-24 21:40:54 +08:00
from torch.utils.data.sampler import Sampler, RandomSampler, SequentialSampler
AVAI_SAMPLERS = ['RandomIdentitySampler', 'SequentialSampler', 'RandomSampler']
2019-03-21 20:59:54 +08:00
class RandomIdentitySampler(Sampler):
"""Randomly samples N identities each with K instances.
Args:
2019-03-22 01:28:14 +08:00
data_source (list): contains tuples of (img_path(s), pid, camid).
batch_size (int): batch size.
2019-03-21 20:59:54 +08:00
num_instances (int): number of instances per identity in a batch.
"""
2019-12-01 10:35:44 +08:00
2019-03-21 20:59:54 +08:00
def __init__(self, data_source, batch_size, num_instances):
if batch_size < num_instances:
2019-12-01 10:35:44 +08:00
raise ValueError(
'batch_size={} must be no less '
'than num_instances={}'.format(batch_size, num_instances)
)
2019-03-21 20:59:54 +08:00
self.data_source = data_source
self.batch_size = batch_size
self.num_instances = num_instances
self.num_pids_per_batch = self.batch_size // self.num_instances
self.index_dic = defaultdict(list)
for index, (_, pid, _) in enumerate(self.data_source):
self.index_dic[pid].append(index)
self.pids = list(self.index_dic.keys())
# estimate number of examples in an epoch
2019-03-22 01:28:14 +08:00
# TODO: improve precision
2019-03-21 20:59:54 +08:00
self.length = 0
for pid in self.pids:
idxs = self.index_dic[pid]
num = len(idxs)
if num < self.num_instances:
num = self.num_instances
self.length += num - num % self.num_instances
def __iter__(self):
batch_idxs_dict = defaultdict(list)
for pid in self.pids:
idxs = copy.deepcopy(self.index_dic[pid])
if len(idxs) < self.num_instances:
2019-12-01 10:35:44 +08:00
idxs = np.random.choice(
idxs, size=self.num_instances, replace=True
)
2019-03-21 20:59:54 +08:00
random.shuffle(idxs)
batch_idxs = []
for idx in idxs:
batch_idxs.append(idx)
if len(batch_idxs) == self.num_instances:
batch_idxs_dict[pid].append(batch_idxs)
batch_idxs = []
avai_pids = copy.deepcopy(self.pids)
final_idxs = []
while len(avai_pids) >= self.num_pids_per_batch:
selected_pids = random.sample(avai_pids, self.num_pids_per_batch)
for pid in selected_pids:
batch_idxs = batch_idxs_dict[pid].pop(0)
final_idxs.extend(batch_idxs)
if len(batch_idxs_dict[pid]) == 0:
avai_pids.remove(pid)
return iter(final_idxs)
def __len__(self):
return self.length
2019-12-01 10:35:44 +08:00
def build_train_sampler(
data_source, train_sampler, batch_size=32, num_instances=4, **kwargs
):
2019-03-21 20:59:54 +08:00
"""Builds a training sampler.
Args:
2019-03-22 01:28:14 +08:00
data_source (list): contains tuples of (img_path(s), pid, camid).
train_sampler (str): sampler name (default: ``RandomSampler``).
batch_size (int, optional): batch size. Default is 32.
num_instances (int, optional): number of instances per identity in a
2019-11-24 21:40:54 +08:00
batch (when using ``RandomIdentitySampler``). Default is 4.
2019-03-21 20:59:54 +08:00
"""
2019-11-24 21:40:54 +08:00
assert train_sampler in AVAI_SAMPLERS, \
'train_sampler must be one of {}, but got {}'.format(AVAI_SAMPLERS, train_sampler)
2019-03-21 20:59:54 +08:00
if train_sampler == 'RandomIdentitySampler':
sampler = RandomIdentitySampler(data_source, batch_size, num_instances)
2019-11-24 21:40:54 +08:00
elif train_sampler == 'SequentialSampler':
sampler = SequentialSampler(data_source)
2019-12-01 10:35:44 +08:00
2019-11-28 00:49:29 +08:00
elif train_sampler == 'RandomSampler':
2019-03-21 20:59:54 +08:00
sampler = RandomSampler(data_source)
2019-12-01 10:35:44 +08:00
return sampler