deep-person-reid/train_vidreid_xent.py

293 lines
11 KiB
Python
Raw Normal View History

2018-07-04 17:32:43 +08:00
from __future__ import print_function
from __future__ import division
2018-03-12 22:09:56 +08:00
import os
import sys
import time
import datetime
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
2018-11-07 23:36:49 +08:00
from args import argument_parser
from torchreid.data_manager import VideoDataManager
2018-08-15 16:48:17 +08:00
from torchreid.dataset_loader import ImageDataset, VideoDataset
from torchreid.transforms import build_transforms
2018-08-15 16:48:17 +08:00
from torchreid import models
from torchreid.losses import CrossEntropyLoss
2018-08-15 16:48:17 +08:00
from torchreid.utils.iotools import save_checkpoint, check_isfile
from torchreid.utils.avgmeter import AverageMeter
from torchreid.utils.logger import Logger
from torchreid.utils.torchtools import set_bn_to_eval, count_num_param
from torchreid.utils.reidtools import visualize_ranked_results
from torchreid.eval_metrics import evaluate
from torchreid.optimizers import init_optim
2018-03-12 22:09:56 +08:00
2018-07-02 20:57:11 +08:00
# global variables
2018-11-07 23:36:49 +08:00
parser = argument_parser()
2018-03-12 22:09:56 +08:00
args = parser.parse_args()
2018-07-02 20:57:11 +08:00
2018-03-12 22:09:56 +08:00
def main():
2018-11-07 23:36:49 +08:00
global args
2018-03-12 22:09:56 +08:00
torch.manual_seed(args.seed)
2018-09-20 04:15:17 +08:00
if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
2018-03-12 22:09:56 +08:00
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
2018-03-14 20:35:14 +08:00
print("Currently using GPU {}".format(args.gpu_devices))
2018-03-12 22:09:56 +08:00
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
transform_train = build_transforms(args.height, args.width, is_train=True)
transform_test = build_transforms(args.height, args.width, is_train=False)
2018-03-12 22:09:56 +08:00
pin_memory = True if use_gpu else False
2018-11-07 23:36:49 +08:00
dm = VideoDataManager(
args.source, args.target, args.root, args.split_id, transform_train, transform_test,
args.train_batch, args.test_batch, args.workers, pin_memory, args.seq_len, args.sample
2018-03-12 22:09:56 +08:00
)
2018-11-07 23:36:49 +08:00
trainloader = dm.trainloader
testloader_dict = dm.testloader_dict
2018-03-12 22:09:56 +08:00
print("Initializing model: {}".format(args.arch))
2018-11-07 23:40:02 +08:00
model = models.init_model(name=args.arch, num_classes=dm.num_train_pids, loss={'xent'})
2018-07-06 18:03:38 +08:00
print("Model size: {:.3f} M".format(count_num_param(model)))
2018-03-12 22:09:56 +08:00
2018-11-07 23:40:02 +08:00
criterion = CrossEntropyLoss(num_classes=dm.num_train_pids, use_gpu=use_gpu, label_smooth=args.label_smooth)
2018-04-27 16:51:04 +08:00
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
2018-07-02 17:17:14 +08:00
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
2018-03-12 22:09:56 +08:00
2018-07-06 18:03:38 +08:00
if args.fixbase_epoch > 0:
2018-07-10 18:56:30 +08:00
if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module):
optimizer_tmp = init_optim(args.optim, model.classifier.parameters(), args.fixbase_lr, args.weight_decay)
else:
print("Warn: model has no attribute 'classifier' and fixbase_epoch is reset to 0")
args.fixbase_epoch = 0
if args.load_weights and check_isfile(args.load_weights):
2018-07-10 18:56:30 +08:00
# load pretrained weights but ignore layers that don't match in size
checkpoint = torch.load(args.load_weights)
pretrain_dict = checkpoint['state_dict']
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Loaded pretrained weights from '{}'".format(args.load_weights))
if args.resume and check_isfile(args.resume):
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
args.start_epoch = checkpoint['epoch'] + 1
print("Loaded checkpoint from '{}'".format(args.resume))
2018-11-07 23:36:49 +08:00
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, checkpoint['rank1']))
2018-03-12 22:09:56 +08:00
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
2018-11-07 23:36:49 +08:00
for name in args.target:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]['query']
galleryloader = testloader_dict[name]['gallery']
distmat = test(model, queryloader, galleryloader, args.pool, use_gpu, return_distmat=True)
if args.visualize_ranks:
visualize_ranked_results(
distmat, dataset,
save_dir=osp.join(args.save_dir, 'ranked_results', name),
topk=20
)
2018-03-12 22:09:56 +08:00
return
start_time = time.time()
2018-04-30 18:19:44 +08:00
train_time = 0
2018-04-27 17:03:24 +08:00
print("==> Start training")
2018-03-12 22:09:56 +08:00
2018-07-06 18:03:38 +08:00
if args.fixbase_epoch > 0:
print("Train classifier for {} epochs while keeping base network frozen".format(args.fixbase_epoch))
for epoch in range(args.fixbase_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer_tmp, trainloader, use_gpu, freeze_bn=True)
train_time += round(time.time() - start_train_time)
del optimizer_tmp
print("Now open all layers for training")
2018-08-01 21:59:43 +08:00
for epoch in range(args.start_epoch, args.max_epoch):
2018-04-30 18:19:44 +08:00
start_train_time = time.time()
2018-04-27 17:03:24 +08:00
train(epoch, model, criterion, optimizer, trainloader, use_gpu)
2018-04-30 18:19:44 +08:00
train_time += round(time.time() - start_train_time)
2018-03-12 22:09:56 +08:00
2018-07-02 17:17:14 +08:00
scheduler.step()
2018-03-12 22:09:56 +08:00
2018-08-01 21:59:43 +08:00
if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch:
2018-03-12 22:09:56 +08:00
print("==> Test")
2018-07-06 18:03:38 +08:00
2018-11-07 23:36:49 +08:00
for name in args.target:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]['query']
galleryloader = testloader_dict[name]['gallery']
rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu)
2018-03-12 22:09:56 +08:00
2018-03-28 07:41:49 +08:00
if use_gpu:
2018-03-29 23:45:39 +08:00
state_dict = model.module.state_dict()
2018-03-28 07:41:49 +08:00
else:
state_dict = model.state_dict()
2018-07-06 18:03:38 +08:00
2018-03-12 22:09:56 +08:00
save_checkpoint({
2018-03-28 07:41:49 +08:00
'state_dict': state_dict,
2018-03-12 22:09:56 +08:00
'rank1': rank1,
'epoch': epoch,
2018-11-07 23:36:49 +08:00
}, False, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
2018-04-27 16:33:12 +08:00
2018-03-12 22:09:56 +08:00
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
2018-04-30 18:19:44 +08:00
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
2018-03-12 22:09:56 +08:00
2018-07-02 20:57:11 +08:00
2018-07-06 18:03:38 +08:00
def train(epoch, model, criterion, optimizer, trainloader, use_gpu, freeze_bn=False):
2018-03-12 22:09:56 +08:00
losses = AverageMeter()
2018-05-23 02:27:09 +08:00
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
2018-03-12 22:09:56 +08:00
2018-07-06 18:03:38 +08:00
if freeze_bn or args.freeze_bn:
model.apply(set_bn_to_eval)
2018-05-23 02:27:09 +08:00
end = time.time()
2018-03-12 22:09:56 +08:00
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
2018-05-23 18:42:32 +08:00
data_time.update(time.time() - end)
2018-07-02 20:57:11 +08:00
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
2018-03-12 22:09:56 +08:00
outputs = model(imgs)
if isinstance(outputs, (tuple, list)):
loss = DeepSupervision(criterion, outputs, pids)
else:
loss = criterion(outputs, pids)
2018-03-12 22:09:56 +08:00
optimizer.zero_grad()
loss.backward()
optimizer.step()
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
losses.update(loss.item(), pids.size(0))
2018-03-12 22:09:56 +08:00
2018-08-01 21:59:43 +08:00
if (batch_idx + 1) % args.print_freq == 0:
2018-05-23 02:27:09 +08:00
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
2018-05-23 02:27:09 +08:00
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
2018-08-01 21:59:43 +08:00
epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time,
2018-05-23 02:27:09 +08:00
data_time=data_time, loss=losses))
2018-07-02 23:39:52 +08:00
end = time.time()
2018-03-12 22:09:56 +08:00
2018-07-02 20:57:11 +08:00
2018-08-01 19:04:58 +08:00
def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20], return_distmat=False):
2018-05-23 02:27:09 +08:00
batch_time = AverageMeter()
2018-03-12 22:09:56 +08:00
model.eval()
2018-04-26 21:11:43 +08:00
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
if use_gpu: imgs = imgs.cuda()
b, s, c, h, w = imgs.size()
imgs = imgs.view(b*s, c, h, w)
2018-05-23 02:27:09 +08:00
end = time.time()
2018-04-26 21:11:43 +08:00
features = model(imgs)
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
features = features.view(b, s, -1)
if pool == 'avg':
features = torch.mean(features, 1)
else:
features, _ = torch.max(features, 1)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
if use_gpu: imgs = imgs.cuda()
b, s, c, h, w = imgs.size()
imgs = imgs.view(b*s, c, h, w)
2018-05-23 02:27:09 +08:00
end = time.time()
2018-04-26 21:11:43 +08:00
features = model(imgs)
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
features = features.view(b, s, -1)
if pool == 'avg':
features = torch.mean(features, 1)
else:
features, _ = torch.max(features, 1)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
2018-05-23 02:27:09 +08:00
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch*args.seq_len))
2018-03-12 22:09:56 +08:00
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids)
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
2018-08-01 19:04:58 +08:00
if return_distmat:
return distmat
2018-03-12 22:09:56 +08:00
return cmc[0]
2018-07-02 20:57:11 +08:00
2018-03-12 22:09:56 +08:00
if __name__ == '__main__':
2018-07-02 23:39:52 +08:00
main()