deep-person-reid/train_vidreid_xent.py

312 lines
12 KiB
Python
Raw Normal View History

2018-07-02 17:17:14 +08:00
from __future__ import print_function, absolute_import, division
2018-03-12 22:09:56 +08:00
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import data_manager
from dataset_loader import ImageDataset, VideoDataset
import transforms as T
import models
from losses import CrossEntropyLabelSmooth
2018-07-02 17:17:14 +08:00
from utils.iotools import save_checkpoint
from utils.avgmeter import AverageMeter
from utils.logger import Logger
2018-03-12 22:09:56 +08:00
from eval_metrics import evaluate
2018-04-27 16:51:04 +08:00
from optimizers import init_optim
2018-03-12 22:09:56 +08:00
2018-07-02 20:57:11 +08:00
2018-03-12 22:09:56 +08:00
parser = argparse.ArgumentParser(description='Train video model with cross entropy loss')
# Datasets
2018-05-02 22:59:06 +08:00
parser.add_argument('--root', type=str, default='data', help="root path to data directory")
2018-03-12 22:09:56 +08:00
parser.add_argument('-d', '--dataset', type=str, default='mars',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=256,
help="height of an image (default: 256)")
parser.add_argument('--width', type=int, default=128,
help="width of an image (default: 128)")
parser.add_argument('--seq-len', type=int, default=15, help="number of images to sample in a tracklet")
# Optimization options
2018-04-27 16:51:04 +08:00
parser.add_argument('--optim', type=str, default='adam', help="optimization algorithm (see optimizers.py)")
2018-03-12 22:09:56 +08:00
parser.add_argument('--max-epoch', default=15, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
2018-03-13 03:50:34 +08:00
parser.add_argument('--test-batch', default=5, type=int, help="test batch size (number of tracklets)")
2018-03-12 22:09:56 +08:00
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate")
2018-07-02 17:17:14 +08:00
parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int,
help="stepsize to decay learning rate")
2018-03-12 22:09:56 +08:00
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
# Architecture
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
parser.add_argument('--pool', type=str, default='avg', choices=['avg', 'max'])
# Miscs
parser.add_argument('--print-freq', type=int, default=10, help="print frequency")
parser.add_argument('--seed', type=int, default=1, help="manual seed")
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--evaluate', action='store_true', help="evaluation only")
parser.add_argument('--eval-step', type=int, default=-1,
help="run evaluation for every N epochs (set to -1 to test after training)")
2018-05-23 18:30:00 +08:00
parser.add_argument('--start-eval', type=int, default=0, help="start to evaluate after specific epoch")
2018-03-12 22:09:56 +08:00
parser.add_argument('--save-dir', type=str, default='log')
parser.add_argument('--use-cpu', action='store_true', help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
2018-07-02 20:57:11 +08:00
2018-03-12 22:09:56 +08:00
def main():
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
2018-03-14 20:35:14 +08:00
print("Currently using GPU {}".format(args.gpu_devices))
2018-03-12 22:09:56 +08:00
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
print("Initializing dataset {}".format(args.dataset))
2018-07-02 17:17:14 +08:00
dataset = data_manager.init_vidreid_dataset(root=args.root, name=args.dataset)
2018-03-12 22:09:56 +08:00
transform_train = T.Compose([
T.Random2DTranslation(args.height, args.width),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_test = T.Compose([
T.Resize((args.height, args.width)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
pin_memory = True if use_gpu else False
# decompose tracklets into images
new_train = []
for img_paths, pid, camid in dataset.train:
for img_path in img_paths:
new_train.append((img_path, pid, camid))
trainloader = DataLoader(
ImageDataset(new_train, transform=transform_train),
batch_size=args.train_batch, shuffle=True, num_workers=args.workers,
pin_memory=pin_memory, drop_last=True,
)
queryloader = DataLoader(
2018-03-13 03:19:09 +08:00
VideoDataset(dataset.query, seq_len=args.seq_len, sample='evenly', transform=transform_test),
2018-03-12 22:09:56 +08:00
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
galleryloader = DataLoader(
2018-03-13 03:19:09 +08:00
VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='evenly', transform=transform_test),
2018-03-12 22:09:56 +08:00
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent'})
print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0))
criterion = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
2018-04-27 16:51:04 +08:00
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
2018-07-02 17:17:14 +08:00
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
2018-03-12 22:09:56 +08:00
start_epoch = args.start_epoch
if args.resume:
print("Loading checkpoint from '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
test(model, queryloader, galleryloader, args.pool, use_gpu)
return
start_time = time.time()
2018-04-30 18:19:44 +08:00
train_time = 0
2018-03-12 22:09:56 +08:00
best_rank1 = -np.inf
2018-04-27 16:33:12 +08:00
best_epoch = 0
2018-04-27 17:03:24 +08:00
print("==> Start training")
2018-03-12 22:09:56 +08:00
for epoch in range(start_epoch, args.max_epoch):
2018-04-30 18:19:44 +08:00
start_train_time = time.time()
2018-04-27 17:03:24 +08:00
train(epoch, model, criterion, optimizer, trainloader, use_gpu)
2018-04-30 18:19:44 +08:00
train_time += round(time.time() - start_train_time)
2018-03-12 22:09:56 +08:00
2018-07-02 17:17:14 +08:00
scheduler.step()
2018-03-12 22:09:56 +08:00
2018-05-23 18:30:00 +08:00
if (epoch+1) > args.start_eval and args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch:
2018-03-12 22:09:56 +08:00
print("==> Test")
rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu)
is_best = rank1 > best_rank1
2018-04-27 16:33:12 +08:00
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
2018-03-12 22:09:56 +08:00
2018-03-28 07:41:49 +08:00
if use_gpu:
2018-03-29 23:45:39 +08:00
state_dict = model.module.state_dict()
2018-03-28 07:41:49 +08:00
else:
state_dict = model.state_dict()
2018-03-12 22:09:56 +08:00
save_checkpoint({
2018-03-28 07:41:49 +08:00
'state_dict': state_dict,
2018-03-12 22:09:56 +08:00
'rank1': rank1,
'epoch': epoch,
}, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar'))
2018-04-27 16:33:12 +08:00
print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))
2018-03-12 22:09:56 +08:00
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
2018-04-30 18:19:44 +08:00
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
2018-03-12 22:09:56 +08:00
2018-07-02 20:57:11 +08:00
2018-04-27 17:03:24 +08:00
def train(epoch, model, criterion, optimizer, trainloader, use_gpu):
2018-03-12 22:09:56 +08:00
losses = AverageMeter()
2018-05-23 02:27:09 +08:00
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
2018-03-12 22:09:56 +08:00
2018-05-23 02:27:09 +08:00
end = time.time()
2018-03-12 22:09:56 +08:00
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
2018-05-23 18:42:32 +08:00
data_time.update(time.time() - end)
2018-07-02 20:57:11 +08:00
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
2018-03-12 22:09:56 +08:00
outputs = model(imgs)
loss = criterion(outputs, pids)
optimizer.zero_grad()
loss.backward()
optimizer.step()
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
losses.update(loss.item(), pids.size(0))
2018-03-12 22:09:56 +08:00
if (batch_idx+1) % args.print_freq == 0:
2018-05-23 02:27:09 +08:00
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch+1, batch_idx+1, len(trainloader), batch_time=batch_time,
data_time=data_time, loss=losses))
2018-07-02 23:39:52 +08:00
end = time.time()
2018-03-12 22:09:56 +08:00
2018-07-02 20:57:11 +08:00
2018-03-12 22:09:56 +08:00
def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20]):
2018-05-23 02:27:09 +08:00
batch_time = AverageMeter()
2018-03-12 22:09:56 +08:00
model.eval()
2018-04-26 21:11:43 +08:00
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
if use_gpu: imgs = imgs.cuda()
b, s, c, h, w = imgs.size()
imgs = imgs.view(b*s, c, h, w)
2018-05-23 02:27:09 +08:00
end = time.time()
2018-04-26 21:11:43 +08:00
features = model(imgs)
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
features = features.view(b, s, -1)
if pool == 'avg':
features = torch.mean(features, 1)
else:
features, _ = torch.max(features, 1)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
if use_gpu: imgs = imgs.cuda()
b, s, c, h, w = imgs.size()
imgs = imgs.view(b*s, c, h, w)
2018-05-23 02:27:09 +08:00
end = time.time()
2018-04-26 21:11:43 +08:00
features = model(imgs)
2018-05-23 02:27:09 +08:00
batch_time.update(time.time() - end)
2018-04-26 21:11:43 +08:00
features = features.view(b, s, -1)
if pool == 'avg':
features = torch.mean(features, 1)
else:
features, _ = torch.max(features, 1)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
2018-05-23 02:27:09 +08:00
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch*args.seq_len))
2018-03-12 22:09:56 +08:00
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids)
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
return cmc[0]
2018-07-02 20:57:11 +08:00
2018-03-12 22:09:56 +08:00
if __name__ == '__main__':
2018-07-02 23:39:52 +08:00
main()