deep-person-reid/torchreid/engine/engine.py

198 lines
7.1 KiB
Python
Raw Normal View History

2019-03-20 01:26:08 +08:00
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import os.path as osp
import time
import datetime
import numpy as np
import torch
import torch.nn as nn
import torchreid
from torchreid.utils import AverageMeter, visualize_ranked_results, save_checkpoint
from torchreid.losses import DeepSupervision
from torchreid import metrics
class Engine(object):
2019-03-21 20:53:21 +08:00
def __init__(self, datamanager, model, optimizer, scheduler=None, use_cpu=False):
self.datamanager = datamanager
2019-03-20 01:26:08 +08:00
self.model = model
self.optimizer = optimizer
self.scheduler = scheduler
self.use_gpu = (torch.cuda.is_available() and not use_cpu)
# check attributes
if not isinstance(self.model, nn.Module):
raise TypeError('model must be an instance of nn.Module')
if not isinstance(self.optimizer, torch.optim.Optimizer):
raise TypeError('optimizer must be an instance of torch.optim.Optimizer')
def run(self, max_epoch=0, start_epoch=0, fixbase_epoch=0, open_layers=None,
start_eval=0, eval_freq=-1, save_dir='log', test_only=False, print_freq=10,
dist_metric='euclidean', visrank=False, visrank_topk=20,
use_metric_cuhk03=False, ranks=[1, 5, 10, 20]):
2019-03-21 20:53:21 +08:00
trainloader, testloader = self.datamanager.return_dataloaders()
2019-03-20 01:26:08 +08:00
if test_only:
self.test(testloader, dist_metric, visrank, visrank_topk,
save_dir, use_metric_cuhk03, ranks)
return
time_start = time.time()
print('=> Start training')
if fixbase_epoch>0 and (open_layers is not None):
print('Pretrain open layers ({}) for {} epochs'.format(open_layers, fixbase_epoch))
for epoch in range(fixbase_epoch):
self.train(epoch, trainloader, fixbase=True, open_layers=open_layers,
print_freq=print_freq)
print('Done. From now on all layers are open to train for {} epochs'.format(max_epoch))
for epoch in range(start_epoch, max_epoch):
self.train(epoch, trainloader, print_freq=print_freq)
if self.scheduler is not None:
self.scheduler.step()
if (epoch+1)>start_eval and eval_freq>0 and (epoch+1)%eval_freq==0 and (epoch+1)!=max_epoch:
rank1 = self.test(testloader, dist_metric, visrank, visrank_topk,
save_dir, use_metric_cuhk03, ranks)
self._save_checkpoint(epoch, rank1, save_dir)
print('=> Final test')
rank1 = self.test(
testloader, dist_metric, visrank, visrank_topk,
save_dir, use_metric_cuhk03, ranks
)
self._save_checkpoint(epoch, rank1, save_dir)
elapsed = round(time.time() - time_start)
elapsed = str(datetime.timedelta(seconds=elapsed))
print('Elapsed {}'.format(elapsed))
def train(self):
raise NotImplementedError
def test(self, testloader, dist_metric='euclidean', visrank=False, visrank_topk=20,
save_dir='', use_metric_cuhk03=False, ranks=[1, 5, 10, 20]):
target_names = list(testloader.keys())
for name in target_names:
print('Evaluate {}'.format(name))
queryloader = testloader[name]['query']
galleryloader = testloader[name]['gallery']
rank1 = self._evaluate(
name, queryloader, galleryloader, dist_metric, visrank,
visrank_topk, save_dir, use_metric_cuhk03, ranks
)
return rank1
@torch.no_grad()
def _evaluate(self, dataset_name, queryloader, galleryloader, dist_metric,
visrank, visrank_topk, save_dir, use_metric_cuhk03, ranks):
batch_time = AverageMeter()
self.model.eval()
print('Extracting features from query set ...')
qf, q_pids, q_camids = [], [], []
for batch_idx, data in enumerate(queryloader):
imgs, pids, camids = self._parse_data_for_eval(data)
if self.use_gpu:
imgs = imgs.cuda()
end = time.time()
features = self._extract_features(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print('Done, obtained {}-by-{} matrix'.format(qf.size(0), qf.size(1)))
print('Extracting features from gallery set ...')
gf, g_pids, g_camids = [], [], []
end = time.time()
for batch_idx, data in enumerate(galleryloader):
imgs, pids, camids = self._parse_data_for_eval(data)
if self.use_gpu:
imgs = imgs.cuda()
end = time.time()
features = self._extract_features(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print('Done, obtained {}-by-{} matrix'.format(gf.size(0), gf.size(1)))
print('Speed: {:.4f} sec/batch'.format(batch_time.avg))
distmat = metrics.compute_distance_matrix(qf, gf, dist_metric)
print('Computing CMC and mAP ...')
cmc, mAP = metrics.evaluate_rank(
distmat,
q_pids,
g_pids,
q_camids,
g_camids,
use_metric_cuhk03=use_metric_cuhk03
)
2019-03-21 20:53:21 +08:00
print('** Results **')
2019-03-20 01:26:08 +08:00
print('mAP: {:.1%}'.format(mAP))
print('CMC curve')
for r in ranks:
print('Rank-{:<3}: {:.1%}'.format(r, cmc[r-1]))
if visrank:
visualize_ranked_results(
distmat,
2019-03-21 20:53:21 +08:00
self.datamanager.return_testdataset_by_name(dataset_name),
2019-03-20 01:26:08 +08:00
save_dir=osp.join(save_dir, 'ranked_results', dataset_name),
topk=visrank_topk
)
return cmc[0]
def _compute_loss(self, criterion, outputs, targets):
if isinstance(outputs, (tuple, list)):
loss = DeepSupervision(criterion, outputs, targets)
else:
loss = criterion(outputs, targets)
return loss
def _extract_features(self, input):
self.model.eval()
return self.model(input)
def _parse_data_for_train(self, data):
imgs = data[0]
pids = data[1]
return imgs, pids
def _parse_data_for_eval(self, data):
imgs = data[0]
pids = data[1]
camids = data[2]
return imgs, pids, camids
def _save_checkpoint(self, epoch, rank1, save_dir, is_best=False):
save_checkpoint({
'state_dict': self.model.state_dict(),
'epoch': epoch + 1,
'rank1': rank1,
'optimizer': self.optimizer.state_dict(),
}, save_dir, is_best=is_best)