deep-person-reid/torchreid/utils/torchtools.py

35 lines
1.2 KiB
Python
Raw Normal View History

2018-07-04 17:32:32 +08:00
from __future__ import absolute_import
from __future__ import division
import torch
2018-07-06 18:03:54 +08:00
import torch.nn as nn
2018-07-04 17:32:32 +08:00
2018-11-08 06:02:23 +08:00
def adjust_learning_rate(optimizer, base_lr, epoch, stepsize=20, gamma=0.1,
linear_decay=False, final_lr=0, max_epoch=100):
if linear_decay:
# linearly decay learning rate from base_lr to final_lr
frac_done = epoch / max_epoch
lr = frac_done * final_lr + (1. - frac_done) * base_lr
else:
# decay learning rate by gamma for every stepsize
lr = base_lr * (gamma ** (epoch // stepsize))
2018-07-04 17:32:32 +08:00
for param_group in optimizer.param_groups:
2018-07-04 22:53:50 +08:00
param_group['lr'] = lr
def set_bn_to_eval(m):
2018-07-06 18:03:54 +08:00
# 1. no update for running mean and var
# 2. scale and shift parameters are still trainable
2018-07-04 22:53:50 +08:00
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.eval()
2018-07-06 18:03:54 +08:00
def count_num_param(model):
num_param = sum(p.numel() for p in model.parameters()) / 1e+06
if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module):
# we ignore the classifier because it is unused at test time
num_param -= sum(p.numel() for p in model.classifier.parameters()) / 1e+06
return num_param