158 lines
5.6 KiB
Python
158 lines
5.6 KiB
Python
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
|
||
|
from collections import OrderedDict
|
||
|
import math
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch.utils import model_zoo
|
||
|
from torch.nn import functional as F
|
||
|
import torch.nn.init as init
|
||
|
import torchvision
|
||
|
import torch.utils.model_zoo as model_zoo
|
||
|
|
||
|
|
||
|
__all__ = ['squeezenet1_0', 'squeezenet1_1']
|
||
|
|
||
|
|
||
|
model_urls = {
|
||
|
'squeezenet1_0': 'https://download.pytorch.org/models/squeezenet1_0-a815701f.pth',
|
||
|
'squeezenet1_1': 'https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth',
|
||
|
}
|
||
|
|
||
|
|
||
|
class Fire(nn.Module):
|
||
|
|
||
|
def __init__(self, inplanes, squeeze_planes,
|
||
|
expand1x1_planes, expand3x3_planes):
|
||
|
super(Fire, self).__init__()
|
||
|
self.inplanes = inplanes
|
||
|
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
|
||
|
self.squeeze_activation = nn.ReLU(inplace=True)
|
||
|
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
|
||
|
kernel_size=1)
|
||
|
self.expand1x1_activation = nn.ReLU(inplace=True)
|
||
|
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
|
||
|
kernel_size=3, padding=1)
|
||
|
self.expand3x3_activation = nn.ReLU(inplace=True)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.squeeze_activation(self.squeeze(x))
|
||
|
return torch.cat([
|
||
|
self.expand1x1_activation(self.expand1x1(x)),
|
||
|
self.expand3x3_activation(self.expand3x3(x))
|
||
|
], 1)
|
||
|
|
||
|
|
||
|
class SqueezeNet(nn.Module):
|
||
|
"""
|
||
|
SqueezeNet
|
||
|
|
||
|
Reference:
|
||
|
Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
|
||
|
and< 0.5 MB model size. arXiv:1602.07360.
|
||
|
"""
|
||
|
def __init__(self, num_classes, loss, version=1.0, **kwargs):
|
||
|
super(SqueezeNet, self).__init__()
|
||
|
self.loss = loss
|
||
|
if version not in [1.0, 1.1]:
|
||
|
raise ValueError("Unsupported SqueezeNet version {version}:"
|
||
|
"1.0 or 1.1 expected".format(version=version))
|
||
|
self.num_classes = num_classes
|
||
|
if version == 1.0:
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 96, kernel_size=7, stride=2),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||
|
Fire(96, 16, 64, 64),
|
||
|
Fire(128, 16, 64, 64),
|
||
|
Fire(128, 32, 128, 128),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||
|
Fire(256, 32, 128, 128),
|
||
|
Fire(256, 48, 192, 192),
|
||
|
Fire(384, 48, 192, 192),
|
||
|
Fire(384, 64, 256, 256),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||
|
Fire(512, 64, 256, 256),
|
||
|
)
|
||
|
else:
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 64, kernel_size=3, stride=2),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||
|
Fire(64, 16, 64, 64),
|
||
|
Fire(128, 16, 64, 64),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||
|
Fire(128, 32, 128, 128),
|
||
|
Fire(256, 32, 128, 128),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||
|
Fire(256, 48, 192, 192),
|
||
|
Fire(384, 48, 192, 192),
|
||
|
Fire(384, 64, 256, 256),
|
||
|
Fire(512, 64, 256, 256),
|
||
|
)
|
||
|
# Final convolution is initialized differently form the rest
|
||
|
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Dropout(p=0.5),
|
||
|
final_conv,
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.AdaptiveAvgPool2d(1)
|
||
|
)
|
||
|
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
if m is final_conv:
|
||
|
init.normal_(m.weight, mean=0.0, std=0.01)
|
||
|
else:
|
||
|
init.kaiming_uniform_(m.weight)
|
||
|
if m.bias is not None:
|
||
|
init.constant_(m.bias, 0)
|
||
|
|
||
|
def forward(self, x):
|
||
|
f = self.features(x)
|
||
|
|
||
|
if not self.training:
|
||
|
v = F.adaptive_avg_pool2d(f, 1)
|
||
|
v = v.view(v.size(0), -1)
|
||
|
return v
|
||
|
|
||
|
y = self.classifier(f)
|
||
|
y = y.view(y.size(0), self.num_classes)
|
||
|
|
||
|
if self.loss == {'xent'}:
|
||
|
return y
|
||
|
elif self.loss == {'xent', 'htri'}:
|
||
|
v = F.adaptive_avg_pool2d(f, 1)
|
||
|
v = v.view(v.size(0), -1)
|
||
|
return y, v
|
||
|
else:
|
||
|
raise KeyError("Unsupported loss: {}".format(self.loss))
|
||
|
|
||
|
|
||
|
def init_pretrained_weights(model, model_url):
|
||
|
"""
|
||
|
Initialize model with pretrained weights.
|
||
|
Layers that don't match with pretrained layers in name or size are kept unchanged.
|
||
|
"""
|
||
|
pretrain_dict = model_zoo.load_url(model_url, map_location=None)
|
||
|
model_dict = model.state_dict()
|
||
|
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
||
|
model_dict.update(pretrain_dict)
|
||
|
model.load_state_dict(model_dict)
|
||
|
print("Initialized model with pretrained weights from {}".format(model_url))
|
||
|
|
||
|
|
||
|
def squeezenet1_0(num_classes, loss, pretrained=True, **kwargs):
|
||
|
model = SqueezeNet(num_classes, loss, version=1.0, **kwargs)
|
||
|
if pretrained:
|
||
|
init_pretrained_weights(model, model_urls['squeezenet1_0'])
|
||
|
return model
|
||
|
|
||
|
|
||
|
def squeezenet1_1(num_classes, loss, pretrained=True, **kwargs):
|
||
|
model = SqueezeNet(num_classes, loss, version=1.1, **kwargs)
|
||
|
if pretrained:
|
||
|
init_pretrained_weights(model, model_urls['squeezenet1_1'])
|
||
|
return model
|