deep-person-reid/torchreid/models/squeezenet.py

158 lines
5.6 KiB
Python
Raw Normal View History

2018-10-27 21:42:28 +08:00
from __future__ import absolute_import
from __future__ import division
from collections import OrderedDict
import math
import torch
import torch.nn as nn
from torch.utils import model_zoo
from torch.nn import functional as F
import torch.nn.init as init
import torchvision
import torch.utils.model_zoo as model_zoo
__all__ = ['squeezenet1_0', 'squeezenet1_1']
model_urls = {
'squeezenet1_0': 'https://download.pytorch.org/models/squeezenet1_0-a815701f.pth',
'squeezenet1_1': 'https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth',
}
class Fire(nn.Module):
def __init__(self, inplanes, squeeze_planes,
expand1x1_planes, expand3x3_planes):
super(Fire, self).__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
kernel_size=1)
self.expand1x1_activation = nn.ReLU(inplace=True)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
kernel_size=3, padding=1)
self.expand3x3_activation = nn.ReLU(inplace=True)
def forward(self, x):
x = self.squeeze_activation(self.squeeze(x))
return torch.cat([
self.expand1x1_activation(self.expand1x1(x)),
self.expand3x3_activation(self.expand3x3(x))
], 1)
class SqueezeNet(nn.Module):
"""
SqueezeNet
Reference:
Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and< 0.5 MB model size. arXiv:1602.07360.
"""
def __init__(self, num_classes, loss, version=1.0, **kwargs):
super(SqueezeNet, self).__init__()
self.loss = loss
if version not in [1.0, 1.1]:
raise ValueError("Unsupported SqueezeNet version {version}:"
"1.0 or 1.1 expected".format(version=version))
self.num_classes = num_classes
if version == 1.0:
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(512, 64, 256, 256),
)
else:
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(128, 32, 128, 128),
Fire(256, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256),
)
# Final convolution is initialized differently form the rest
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
final_conv,
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(1)
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m is final_conv:
init.normal_(m.weight, mean=0.0, std=0.01)
else:
init.kaiming_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
f = self.features(x)
if not self.training:
v = F.adaptive_avg_pool2d(f, 1)
v = v.view(v.size(0), -1)
return v
y = self.classifier(f)
y = y.view(y.size(0), self.num_classes)
if self.loss == {'xent'}:
return y
elif self.loss == {'xent', 'htri'}:
v = F.adaptive_avg_pool2d(f, 1)
v = v.view(v.size(0), -1)
return y, v
else:
raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, model_url):
"""
Initialize model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
pretrain_dict = model_zoo.load_url(model_url, map_location=None)
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Initialized model with pretrained weights from {}".format(model_url))
def squeezenet1_0(num_classes, loss, pretrained=True, **kwargs):
model = SqueezeNet(num_classes, loss, version=1.0, **kwargs)
if pretrained:
init_pretrained_weights(model, model_urls['squeezenet1_0'])
return model
def squeezenet1_1(num_classes, loss, pretrained=True, **kwargs):
model = SqueezeNet(num_classes, loss, version=1.1, **kwargs)
if pretrained:
init_pretrained_weights(model, model_urls['squeezenet1_1'])
return model