2019-03-25 01:22:43 +08:00
<!DOCTYPE html>
<!-- [if IE 8]><html class="no - js lt - ie9" lang="en" > <![endif] -->
<!-- [if gt IE 8]><! --> < html class = "no-js" lang = "en" > <!-- <![endif] -->
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width, initial-scale=1.0" >
2019-04-28 06:32:21 +08:00
< title > torchreid.engine.video.triplet — torchreid 0.7.4 documentation< / title >
2019-03-25 01:22:43 +08:00
< script type = "text/javascript" src = "../../../../_static/js/modernizr.min.js" > < / script >
< script type = "text/javascript" id = "documentation_options" data-url_root = "../../../../" src = "../../../../_static/documentation_options.js" > < / script >
< script type = "text/javascript" src = "../../../../_static/jquery.js" > < / script >
< script type = "text/javascript" src = "../../../../_static/underscore.js" > < / script >
< script type = "text/javascript" src = "../../../../_static/doctools.js" > < / script >
< script type = "text/javascript" src = "../../../../_static/language_data.js" > < / script >
< script async = "async" type = "text/javascript" src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML" > < / script >
< script type = "text/javascript" src = "../../../../_static/js/theme.js" > < / script >
< link rel = "stylesheet" href = "../../../../_static/css/theme.css" type = "text/css" / >
< link rel = "stylesheet" href = "../../../../_static/pygments.css" type = "text/css" / >
< link rel = "index" title = "Index" href = "../../../../genindex.html" / >
< link rel = "search" title = "Search" href = "../../../../search.html" / >
< / head >
< body class = "wy-body-for-nav" >
< div class = "wy-grid-for-nav" >
< nav data-toggle = "wy-nav-shift" class = "wy-nav-side" >
< div class = "wy-side-scroll" >
< div class = "wy-side-nav-search" >
< a href = "../../../../index.html" class = "icon icon-home" > torchreid
< / a >
< div class = "version" >
2019-04-28 06:32:21 +08:00
0.7.4
2019-03-25 01:22:43 +08:00
< / div >
< div role = "search" >
< form id = "rtd-search-form" class = "wy-form" action = "../../../../search.html" method = "get" >
< input type = "text" name = "q" placeholder = "Search docs" / >
< input type = "hidden" name = "check_keywords" value = "yes" / >
< input type = "hidden" name = "area" value = "default" / >
< / form >
< / div >
< / div >
< div class = "wy-menu wy-menu-vertical" data-spy = "affix" role = "navigation" aria-label = "main navigation" >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../user_guide.html" > How-to< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../datasets.html" > Datasets< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../evaluation.html" > Evaluation< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Package Reference< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../pkg/data.html" > torchreid.data< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../pkg/engine.html" > torchreid.engine< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../pkg/losses.html" > torchreid.losses< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../pkg/metrics.html" > torchreid.metrics< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../pkg/models.html" > torchreid.models< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../pkg/optim.html" > torchreid.optim< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../pkg/utils.html" > torchreid.utils< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Resources< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../AWESOME_REID.html" > Awesome-ReID< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../../../../MODEL_ZOO.html" > Model Zoo< / a > < / li >
< / ul >
< / div >
< / div >
< / nav >
< section data-toggle = "wy-nav-shift" class = "wy-nav-content-wrap" >
< nav class = "wy-nav-top" aria-label = "top navigation" >
< i data-toggle = "wy-nav-top" class = "fa fa-bars" > < / i >
< a href = "../../../../index.html" > torchreid< / a >
< / nav >
< div class = "wy-nav-content" >
< div class = "rst-content" >
< div role = "navigation" aria-label = "breadcrumbs navigation" >
< ul class = "wy-breadcrumbs" >
< li > < a href = "../../../../index.html" > Docs< / a > » < / li >
< li > < a href = "../../../index.html" > Module code< / a > » < / li >
< li > torchreid.engine.video.triplet< / li >
< li class = "wy-breadcrumbs-aside" >
< / li >
< / ul >
< hr / >
< / div >
< div role = "main" class = "document" itemscope = "itemscope" itemtype = "http://schema.org/Article" >
< div itemprop = "articleBody" >
< h1 > Source code for torchreid.engine.video.triplet< / h1 > < div class = "highlight" > < pre >
< span > < / span > < span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > absolute_import< / span >
< span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > print_function< / span >
< span class = "kn" > from< / span > < span class = "nn" > __future__< / span > < span class = "k" > import< / span > < span class = "n" > division< / span >
< span class = "kn" > import< / span > < span class = "nn" > time< / span >
< span class = "kn" > import< / span > < span class = "nn" > datetime< / span >
< span class = "kn" > import< / span > < span class = "nn" > torch< / span >
< span class = "kn" > import< / span > < span class = "nn" > torchreid< / span >
< span class = "kn" > from< / span > < span class = "nn" > torchreid.engine.image< / span > < span class = "k" > import< / span > < span class = "n" > ImageTripletEngine< / span >
< span class = "kn" > from< / span > < span class = "nn" > torchreid.engine.video< / span > < span class = "k" > import< / span > < span class = "n" > VideoSoftmaxEngine< / span >
< div class = "viewcode-block" id = "VideoTripletEngine" > < a class = "viewcode-back" href = "../../../../pkg/engine.html#torchreid.engine.video.triplet.VideoTripletEngine" > [docs]< / a > < span class = "k" > class< / span > < span class = "nc" > VideoTripletEngine< / span > < span class = "p" > (< / span > < span class = "n" > ImageTripletEngine< / span > < span class = "p" > ,< / span > < span class = "n" > VideoSoftmaxEngine< / span > < span class = "p" > ):< / span >
< span class = "sd" > " " " Triplet-loss engine for video-reid.< / span >
< span class = "sd" > Args:< / span >
< span class = "sd" > datamanager (DataManager): an instance of ``torchreid.data.ImageDataManager``< / span >
< span class = "sd" > or ``torchreid.data.VideoDataManager``.< / span >
< span class = "sd" > model (nn.Module): model instance.< / span >
< span class = "sd" > optimizer (Optimizer): an Optimizer.< / span >
< span class = "sd" > margin (float, optional): margin for triplet loss. Default is 0.3.< / span >
< span class = "sd" > weight_t (float, optional): weight for triplet loss. Default is 1.< / span >
< span class = "sd" > weight_x (float, optional): weight for softmax loss. Default is 1.< / span >
< span class = "sd" > scheduler (LRScheduler, optional): if None, no learning rate decay will be performed.< / span >
< span class = "sd" > use_cpu (bool, optional): use cpu. Default is False.< / span >
< span class = "sd" > label_smooth (bool, optional): use label smoothing regularizer. Default is True.< / span >
< span class = "sd" > pooling_method (str, optional): how to pool features for a tracklet.< / span >
< span class = "sd" > Default is " avg" (average). Choices are [" avg" , " max" ].< / span >
< span class = "sd" > Examples::< / span >
< span class = "sd" > < / span >
< span class = "sd" > import torch< / span >
< span class = "sd" > import torchreid< / span >
< span class = "sd" > # Each batch contains batch_size*seq_len images< / span >
< span class = "sd" > # Each identity is sampled with num_instances tracklets < / span >
< span class = "sd" > datamanager = torchreid.data.VideoDataManager(< / span >
< span class = "sd" > root=' path/to/reid-data' ,< / span >
< span class = "sd" > sources=' mars' ,< / span >
< span class = "sd" > height=256,< / span >
< span class = "sd" > width=128,< / span >
< span class = "sd" > combineall=False,< / span >
< span class = "sd" > num_instances=4,< / span >
< span class = "sd" > train_sampler=' RandomIdentitySampler' < / span >
< span class = "sd" > batch_size=8, # number of tracklets< / span >
< span class = "sd" > seq_len=15 # number of images in each tracklet< / span >
< span class = "sd" > )< / span >
< span class = "sd" > model = torchreid.models.build_model(< / span >
< span class = "sd" > name=' resnet50' ,< / span >
< span class = "sd" > num_classes=datamanager.num_train_pids,< / span >
< span class = "sd" > loss=' triplet' < / span >
< span class = "sd" > )< / span >
< span class = "sd" > model = model.cuda()< / span >
< span class = "sd" > optimizer = torchreid.optim.build_optimizer(< / span >
< span class = "sd" > model, optim=' adam' , lr=0.0003< / span >
< span class = "sd" > )< / span >
< span class = "sd" > scheduler = torchreid.optim.build_lr_scheduler(< / span >
< span class = "sd" > optimizer,< / span >
< span class = "sd" > lr_scheduler=' single_step' ,< / span >
< span class = "sd" > stepsize=20< / span >
< span class = "sd" > )< / span >
< span class = "sd" > engine = torchreid.engine.VideoTripletEngine(< / span >
< span class = "sd" > datamanager, model, optimizer, margin=0.3,< / span >
< span class = "sd" > weight_t=0.7, weight_x=1, scheduler=scheduler,< / span >
< span class = "sd" > pooling_method=' avg' < / span >
< span class = "sd" > )< / span >
< span class = "sd" > engine.run(< / span >
< span class = "sd" > max_epoch=60,< / span >
< span class = "sd" > save_dir=' log/resnet50-triplet-mars' ,< / span >
< span class = "sd" > print_freq=10< / span >
< span class = "sd" > )< / span >
2019-05-06 17:48:46 +08:00
< span class = "sd" > " " " < / span >
2019-03-25 01:22:43 +08:00
< span class = "k" > def< / span > < span class = "nf" > __init__< / span > < span class = "p" > (< / span > < span class = "bp" > self< / span > < span class = "p" > ,< / span > < span class = "n" > datamanager< / span > < span class = "p" > ,< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > optimizer< / span > < span class = "p" > ,< / span > < span class = "n" > margin< / span > < span class = "o" > =< / span > < span class = "mf" > 0.3< / span > < span class = "p" > ,< / span >
< span class = "n" > weight_t< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > weight_x< / span > < span class = "o" > =< / span > < span class = "mi" > 1< / span > < span class = "p" > ,< / span > < span class = "n" > scheduler< / span > < span class = "o" > =< / span > < span class = "kc" > None< / span > < span class = "p" > ,< / span > < span class = "n" > use_cpu< / span > < span class = "o" > =< / span > < span class = "kc" > False< / span > < span class = "p" > ,< / span >
< span class = "n" > label_smooth< / span > < span class = "o" > =< / span > < span class = "kc" > True< / span > < span class = "p" > ,< / span > < span class = "n" > pooling_method< / span > < span class = "o" > =< / span > < span class = "s1" > ' avg' < / span > < span class = "p" > ):< / span >
< span class = "nb" > super< / span > < span class = "p" > (< / span > < span class = "n" > VideoTripletEngine< / span > < span class = "p" > ,< / span > < span class = "bp" > self< / span > < span class = "p" > )< / span > < span class = "o" > .< / span > < span class = "fm" > __init__< / span > < span class = "p" > (< / span > < span class = "n" > datamanager< / span > < span class = "p" > ,< / span > < span class = "n" > model< / span > < span class = "p" > ,< / span > < span class = "n" > optimizer< / span > < span class = "p" > ,< / span > < span class = "n" > margin< / span > < span class = "o" > =< / span > < span class = "n" > margin< / span > < span class = "p" > ,< / span >
< span class = "n" > weight_t< / span > < span class = "o" > =< / span > < span class = "n" > weight_t< / span > < span class = "p" > ,< / span > < span class = "n" > weight_x< / span > < span class = "o" > =< / span > < span class = "n" > weight_x< / span > < span class = "p" > ,< / span >
< span class = "n" > scheduler< / span > < span class = "o" > =< / span > < span class = "n" > scheduler< / span > < span class = "p" > ,< / span > < span class = "n" > use_cpu< / span > < span class = "o" > =< / span > < span class = "n" > use_cpu< / span > < span class = "p" > ,< / span >
< span class = "n" > label_smooth< / span > < span class = "o" > =< / span > < span class = "n" > label_smooth< / span > < span class = "p" > )< / span >
< span class = "bp" > self< / span > < span class = "o" > .< / span > < span class = "n" > pooling_method< / span > < span class = "o" > =< / span > < span class = "n" > pooling_method< / span > < / div >
< / pre > < / div >
< / div >
< / div >
< footer >
< hr / >
< div role = "contentinfo" >
< p >
© Copyright 2019, Kaiyang Zhou
< / p >
< / div >
Built with < a href = "http://sphinx-doc.org/" > Sphinx< / a > using a < a href = "https://github.com/rtfd/sphinx_rtd_theme" > theme< / a > provided by < a href = "https://readthedocs.org" > Read the Docs< / a > .
< / footer >
< / div >
< / div >
< / section >
< / div >
< script type = "text/javascript" >
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
< / script >
< / body >
< / html >