2019-03-25 01:22:43 +08:00
<!DOCTYPE html>
<!-- [if IE 8]><html class="no - js lt - ie9" lang="en" > <![endif] -->
<!-- [if gt IE 8]><! --> < html class = "no-js" lang = "en" > <!-- <![endif] -->
< head >
< meta charset = "utf-8" >
< meta name = "viewport" content = "width=device-width, initial-scale=1.0" >
2019-10-24 00:21:41 +08:00
< title > torchreid.metrics — torchreid 1.0.6 documentation< / title >
2019-03-25 01:22:43 +08:00
< script type = "text/javascript" src = "../_static/js/modernizr.min.js" > < / script >
< script type = "text/javascript" id = "documentation_options" data-url_root = "../" src = "../_static/documentation_options.js" > < / script >
< script type = "text/javascript" src = "../_static/jquery.js" > < / script >
< script type = "text/javascript" src = "../_static/underscore.js" > < / script >
< script type = "text/javascript" src = "../_static/doctools.js" > < / script >
< script type = "text/javascript" src = "../_static/language_data.js" > < / script >
< script async = "async" type = "text/javascript" src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML" > < / script >
< script type = "text/javascript" src = "../_static/js/theme.js" > < / script >
< link rel = "stylesheet" href = "../_static/css/theme.css" type = "text/css" / >
< link rel = "stylesheet" href = "../_static/pygments.css" type = "text/css" / >
< link rel = "index" title = "Index" href = "../genindex.html" / >
< link rel = "search" title = "Search" href = "../search.html" / >
< link rel = "next" title = "torchreid.models" href = "models.html" / >
< link rel = "prev" title = "torchreid.losses" href = "losses.html" / >
< / head >
< body class = "wy-body-for-nav" >
< div class = "wy-grid-for-nav" >
< nav data-toggle = "wy-nav-shift" class = "wy-nav-side" >
< div class = "wy-side-scroll" >
< div class = "wy-side-nav-search" >
< a href = "../index.html" class = "icon icon-home" > torchreid
< / a >
< div class = "version" >
2019-10-24 00:21:41 +08:00
1.0.6
2019-03-25 01:22:43 +08:00
< / div >
< div role = "search" >
< form id = "rtd-search-form" class = "wy-form" action = "../search.html" method = "get" >
< input type = "text" name = "q" placeholder = "Search docs" / >
< input type = "hidden" name = "check_keywords" value = "yes" / >
< input type = "hidden" name = "area" value = "default" / >
< / form >
< / div >
< / div >
< div class = "wy-menu wy-menu-vertical" data-spy = "affix" role = "navigation" aria-label = "main navigation" >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../user_guide.html" > How-to< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../datasets.html" > Datasets< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../evaluation.html" > Evaluation< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Package Reference< / span > < / p >
< ul class = "current" >
< li class = "toctree-l1" > < a class = "reference internal" href = "data.html" > torchreid.data< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "engine.html" > torchreid.engine< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "losses.html" > torchreid.losses< / a > < / li >
< li class = "toctree-l1 current" > < a class = "current reference internal" href = "#" > torchreid.metrics< / a > < ul >
< li class = "toctree-l2" > < a class = "reference internal" href = "#module-torchreid.metrics.distance" > Distance< / a > < / li >
< li class = "toctree-l2" > < a class = "reference internal" href = "#module-torchreid.metrics.accuracy" > Accuracy< / a > < / li >
< li class = "toctree-l2" > < a class = "reference internal" href = "#module-torchreid.metrics.rank" > Rank< / a > < / li >
< / ul >
< / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "models.html" > torchreid.models< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "optim.html" > torchreid.optim< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "utils.html" > torchreid.utils< / a > < / li >
< / ul >
< p class = "caption" > < span class = "caption-text" > Resources< / span > < / p >
< ul >
< li class = "toctree-l1" > < a class = "reference internal" href = "../AWESOME_REID.html" > Awesome-ReID< / a > < / li >
< li class = "toctree-l1" > < a class = "reference internal" href = "../MODEL_ZOO.html" > Model Zoo< / a > < / li >
< / ul >
< / div >
< / div >
< / nav >
< section data-toggle = "wy-nav-shift" class = "wy-nav-content-wrap" >
< nav class = "wy-nav-top" aria-label = "top navigation" >
< i data-toggle = "wy-nav-top" class = "fa fa-bars" > < / i >
< a href = "../index.html" > torchreid< / a >
< / nav >
< div class = "wy-nav-content" >
< div class = "rst-content" >
< div role = "navigation" aria-label = "breadcrumbs navigation" >
< ul class = "wy-breadcrumbs" >
< li > < a href = "../index.html" > Docs< / a > » < / li >
< li > torchreid.metrics< / li >
< li class = "wy-breadcrumbs-aside" >
< a href = "../_sources/pkg/metrics.rst.txt" rel = "nofollow" > View page source< / a >
< / li >
< / ul >
< hr / >
< / div >
< div role = "main" class = "document" itemscope = "itemscope" itemtype = "http://schema.org/Article" >
< div itemprop = "articleBody" >
< div class = "section" id = "torchreid-metrics" >
< span id = "id1" > < / span > < h1 > torchreid.metrics< a class = "headerlink" href = "#torchreid-metrics" title = "Permalink to this headline" > ¶< / a > < / h1 >
< div class = "section" id = "module-torchreid.metrics.distance" >
< span id = "distance" > < / span > < h2 > Distance< a class = "headerlink" href = "#module-torchreid.metrics.distance" title = "Permalink to this headline" > ¶< / a > < / h2 >
< dl class = "function" >
< dt id = "torchreid.metrics.distance.compute_distance_matrix" >
2019-11-22 07:46:58 +08:00
< code class = "descclassname" > torchreid.metrics.distance.< / code > < code class = "descname" > compute_distance_matrix< / code > < span class = "sig-paren" > (< / span > < em > input1< / em > , < em > input2< / em > , < em > metric='euclidean'< / em > < span class = "sig-paren" > )< / span > < a class = "reference internal" href = "../_modules/torchreid/metrics/distance.html#compute_distance_matrix" > < span class = "viewcode-link" > [source]< / span > < / a > < a class = "headerlink" href = "#torchreid.metrics.distance.compute_distance_matrix" title = "Permalink to this definition" > ¶< / a > < / dt >
2019-03-25 01:22:43 +08:00
< dd > < p > A wrapper function for computing distance matrix.< / p >
2019-11-22 07:46:58 +08:00
< table class = "docutils field-list" frame = "void" rules = "none" >
< col class = "field-name" / >
< col class = "field-body" / >
< tbody valign = "top" >
< tr class = "field-odd field" > < th class = "field-name" > Parameters:< / th > < td class = "field-body" > < ul class = "first simple" >
< li > < strong > input1< / strong > (< em > torch.Tensor< / em > ) – 2-D feature matrix.< / li >
< li > < strong > input2< / strong > (< em > torch.Tensor< / em > ) – 2-D feature matrix.< / li >
< li > < strong > metric< / strong > (< em > str< / em > < em > , < / em > < em > optional< / em > ) – “euclidean” or “cosine”.
Default is “euclidean”.< / li >
2019-03-25 01:22:43 +08:00
< / ul >
2019-11-22 07:46:58 +08:00
< / td >
< / tr >
< tr class = "field-even field" > < th class = "field-name" > Returns:< / th > < td class = "field-body" > < p class = "first" > distance matrix.< / p >
< / td >
< / tr >
< tr class = "field-odd field" > < th class = "field-name" > Return type:< / th > < td class = "field-body" > < p class = "first last" > torch.Tensor< / p >
< / td >
< / tr >
< / tbody >
< / table >
< dl class = "docutils" >
< dt > Examples::< / dt >
< dd > < div class = "first last highlight-default notranslate" > < div class = "highlight" > < pre > < span > < / span > < span class = "gp" > > > > < / span > < span class = "kn" > from< / span > < span class = "nn" > torchreid< / span > < span class = "k" > import< / span > < span class = "n" > metrics< / span >
2019-03-25 01:22:43 +08:00
< span class = "gp" > > > > < / span > < span class = "n" > input1< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > rand< / span > < span class = "p" > (< / span > < span class = "mi" > 10< / span > < span class = "p" > ,< / span > < span class = "mi" > 2048< / span > < span class = "p" > )< / span >
< span class = "gp" > > > > < / span > < span class = "n" > input2< / span > < span class = "o" > =< / span > < span class = "n" > torch< / span > < span class = "o" > .< / span > < span class = "n" > rand< / span > < span class = "p" > (< / span > < span class = "mi" > 100< / span > < span class = "p" > ,< / span > < span class = "mi" > 2048< / span > < span class = "p" > )< / span >
< span class = "gp" > > > > < / span > < span class = "n" > distmat< / span > < span class = "o" > =< / span > < span class = "n" > metrics< / span > < span class = "o" > .< / span > < span class = "n" > compute_distance_matrix< / span > < span class = "p" > (< / span > < span class = "n" > input1< / span > < span class = "p" > ,< / span > < span class = "n" > input2< / span > < span class = "p" > )< / span >
< span class = "gp" > > > > < / span > < span class = "n" > distmat< / span > < span class = "o" > .< / span > < span class = "n" > size< / span > < span class = "p" > ()< / span > < span class = "c1" > # (10, 100)< / span >
< / pre > < / div >
< / div >
< / dd >
< / dl >
< / dd > < / dl >
< dl class = "function" >
< dt id = "torchreid.metrics.distance.cosine_distance" >
2019-11-22 07:46:58 +08:00
< code class = "descclassname" > torchreid.metrics.distance.< / code > < code class = "descname" > cosine_distance< / code > < span class = "sig-paren" > (< / span > < em > input1< / em > , < em > input2< / em > < span class = "sig-paren" > )< / span > < a class = "reference internal" href = "../_modules/torchreid/metrics/distance.html#cosine_distance" > < span class = "viewcode-link" > [source]< / span > < / a > < a class = "headerlink" href = "#torchreid.metrics.distance.cosine_distance" title = "Permalink to this definition" > ¶< / a > < / dt >
2019-03-25 01:22:43 +08:00
< dd > < p > Computes cosine distance.< / p >
2019-11-22 07:46:58 +08:00
< table class = "docutils field-list" frame = "void" rules = "none" >
< col class = "field-name" / >
< col class = "field-body" / >
< tbody valign = "top" >
< tr class = "field-odd field" > < th class = "field-name" > Parameters:< / th > < td class = "field-body" > < ul class = "first simple" >
< li > < strong > input1< / strong > (< em > torch.Tensor< / em > ) – 2-D feature matrix.< / li >
< li > < strong > input2< / strong > (< em > torch.Tensor< / em > ) – 2-D feature matrix.< / li >
2019-03-25 01:22:43 +08:00
< / ul >
2019-11-22 07:46:58 +08:00
< / td >
< / tr >
< tr class = "field-even field" > < th class = "field-name" > Returns:< / th > < td class = "field-body" > < p class = "first" > distance matrix.< / p >
< / td >
< / tr >
< tr class = "field-odd field" > < th class = "field-name" > Return type:< / th > < td class = "field-body" > < p class = "first last" > torch.Tensor< / p >
< / td >
< / tr >
< / tbody >
< / table >
2019-03-25 01:22:43 +08:00
< / dd > < / dl >
< dl class = "function" >
< dt id = "torchreid.metrics.distance.euclidean_squared_distance" >
2019-11-22 07:46:58 +08:00
< code class = "descclassname" > torchreid.metrics.distance.< / code > < code class = "descname" > euclidean_squared_distance< / code > < span class = "sig-paren" > (< / span > < em > input1< / em > , < em > input2< / em > < span class = "sig-paren" > )< / span > < a class = "reference internal" href = "../_modules/torchreid/metrics/distance.html#euclidean_squared_distance" > < span class = "viewcode-link" > [source]< / span > < / a > < a class = "headerlink" href = "#torchreid.metrics.distance.euclidean_squared_distance" title = "Permalink to this definition" > ¶< / a > < / dt >
2019-03-25 01:22:43 +08:00
< dd > < p > Computes euclidean squared distance.< / p >
2019-11-22 07:46:58 +08:00
< table class = "docutils field-list" frame = "void" rules = "none" >
< col class = "field-name" / >
< col class = "field-body" / >
< tbody valign = "top" >
< tr class = "field-odd field" > < th class = "field-name" > Parameters:< / th > < td class = "field-body" > < ul class = "first simple" >
< li > < strong > input1< / strong > (< em > torch.Tensor< / em > ) – 2-D feature matrix.< / li >
< li > < strong > input2< / strong > (< em > torch.Tensor< / em > ) – 2-D feature matrix.< / li >
2019-03-25 01:22:43 +08:00
< / ul >
2019-11-22 07:46:58 +08:00
< / td >
< / tr >
< tr class = "field-even field" > < th class = "field-name" > Returns:< / th > < td class = "field-body" > < p class = "first" > distance matrix.< / p >
< / td >
< / tr >
< tr class = "field-odd field" > < th class = "field-name" > Return type:< / th > < td class = "field-body" > < p class = "first last" > torch.Tensor< / p >
< / td >
< / tr >
< / tbody >
< / table >
2019-03-25 01:22:43 +08:00
< / dd > < / dl >
< / div >
< div class = "section" id = "module-torchreid.metrics.accuracy" >
< span id = "accuracy" > < / span > < h2 > Accuracy< a class = "headerlink" href = "#module-torchreid.metrics.accuracy" title = "Permalink to this headline" > ¶< / a > < / h2 >
< dl class = "function" >
< dt id = "torchreid.metrics.accuracy.accuracy" >
2019-11-22 07:46:58 +08:00
< code class = "descclassname" > torchreid.metrics.accuracy.< / code > < code class = "descname" > accuracy< / code > < span class = "sig-paren" > (< / span > < em > output< / em > , < em > target< / em > , < em > topk=(1< / em > , < em > )< / em > < span class = "sig-paren" > )< / span > < a class = "reference internal" href = "../_modules/torchreid/metrics/accuracy.html#accuracy" > < span class = "viewcode-link" > [source]< / span > < / a > < a class = "headerlink" href = "#torchreid.metrics.accuracy.accuracy" title = "Permalink to this definition" > ¶< / a > < / dt >
2019-03-25 01:22:43 +08:00
< dd > < p > Computes the accuracy over the k top predictions for
the specified values of k.< / p >
2019-11-22 07:46:58 +08:00
< table class = "docutils field-list" frame = "void" rules = "none" >
< col class = "field-name" / >
< col class = "field-body" / >
< tbody valign = "top" >
< tr class = "field-odd field" > < th class = "field-name" > Parameters:< / th > < td class = "field-body" > < ul class = "first simple" >
< li > < strong > output< / strong > (< em > torch.Tensor< / em > ) – prediction matrix with shape (batch_size, num_classes).< / li >
< li > < strong > target< / strong > (< em > torch.LongTensor< / em > ) – ground truth labels with shape (batch_size).< / li >
< li > < strong > topk< / strong > (< em > tuple< / em > < em > , < / em > < em > optional< / em > ) – accuracy at top-k will be computed. For example,
topk=(1, 5) means accuracy at top-1 and top-5 will be computed.< / li >
2019-03-25 01:22:43 +08:00
< / ul >
2019-11-22 07:46:58 +08:00
< / td >
< / tr >
< tr class = "field-even field" > < th class = "field-name" > Returns:< / th > < td class = "field-body" > < p class = "first" > accuracy at top-k.< / p >
< / td >
< / tr >
< tr class = "field-odd field" > < th class = "field-name" > Return type:< / th > < td class = "field-body" > < p class = "first last" > list< / p >
< / td >
< / tr >
< / tbody >
< / table >
< dl class = "docutils" >
< dt > Examples::< / dt >
< dd > < div class = "first last highlight-default notranslate" > < div class = "highlight" > < pre > < span > < / span > < span class = "gp" > > > > < / span > < span class = "kn" > from< / span > < span class = "nn" > torchreid< / span > < span class = "k" > import< / span > < span class = "n" > metrics< / span >
2019-03-25 01:22:43 +08:00
< span class = "gp" > > > > < / span > < span class = "n" > metrics< / span > < span class = "o" > .< / span > < span class = "n" > accuracy< / span > < span class = "p" > (< / span > < span class = "n" > output< / span > < span class = "p" > ,< / span > < span class = "n" > target< / span > < span class = "p" > )< / span >
< / pre > < / div >
< / div >
< / dd >
< / dl >
< / dd > < / dl >
< / div >
< div class = "section" id = "module-torchreid.metrics.rank" >
< span id = "rank" > < / span > < h2 > Rank< a class = "headerlink" href = "#module-torchreid.metrics.rank" title = "Permalink to this headline" > ¶< / a > < / h2 >
< dl class = "function" >
< dt id = "torchreid.metrics.rank.evaluate_rank" >
2019-11-22 07:46:58 +08:00
< code class = "descclassname" > torchreid.metrics.rank.< / code > < code class = "descname" > evaluate_rank< / code > < span class = "sig-paren" > (< / span > < em > distmat< / em > , < em > q_pids< / em > , < em > g_pids< / em > , < em > q_camids< / em > , < em > g_camids< / em > , < em > max_rank=50< / em > , < em > use_metric_cuhk03=False< / em > , < em > use_cython=True< / em > < span class = "sig-paren" > )< / span > < a class = "reference internal" href = "../_modules/torchreid/metrics/rank.html#evaluate_rank" > < span class = "viewcode-link" > [source]< / span > < / a > < a class = "headerlink" href = "#torchreid.metrics.rank.evaluate_rank" title = "Permalink to this definition" > ¶< / a > < / dt >
2019-03-25 01:22:43 +08:00
< dd > < p > Evaluates CMC rank.< / p >
2019-11-22 07:46:58 +08:00
< table class = "docutils field-list" frame = "void" rules = "none" >
< col class = "field-name" / >
< col class = "field-body" / >
< tbody valign = "top" >
< tr class = "field-odd field" > < th class = "field-name" > Parameters:< / th > < td class = "field-body" > < ul class = "first last simple" >
< li > < strong > distmat< / strong > (< em > numpy.ndarray< / em > ) – distance matrix of shape (num_query, num_gallery).< / li >
< li > < strong > q_pids< / strong > (< em > numpy.ndarray< / em > ) – 1-D array containing person identities
of each query instance.< / li >
< li > < strong > g_pids< / strong > (< em > numpy.ndarray< / em > ) – 1-D array containing person identities
of each gallery instance.< / li >
< li > < strong > q_camids< / strong > (< em > numpy.ndarray< / em > ) – 1-D array containing camera views under
which each query instance is captured.< / li >
< li > < strong > g_camids< / strong > (< em > numpy.ndarray< / em > ) – 1-D array containing camera views under
which each gallery instance is captured.< / li >
< li > < strong > max_rank< / strong > (< em > int< / em > < em > , < / em > < em > optional< / em > ) – maximum CMC rank to be computed. Default is 50.< / li >
< li > < strong > use_metric_cuhk03< / strong > (< em > bool< / em > < em > , < / em > < em > optional< / em > ) – use single-gallery-shot setting for cuhk03.
Default is False. This should be enabled when using cuhk03 classic split.< / li >
< li > < strong > use_cython< / strong > (< em > bool< / em > < em > , < / em > < em > optional< / em > ) – use cython code for evaluation. Default is True.
2019-03-25 01:22:43 +08:00
This is highly recommended as the cython code can speed up the cmc computation
2019-11-22 07:46:58 +08:00
by more than 10x. This requires Cython to be installed.< / li >
2019-03-25 01:22:43 +08:00
< / ul >
2019-11-22 07:46:58 +08:00
< / td >
< / tr >
< / tbody >
< / table >
2019-03-25 01:22:43 +08:00
< / dd > < / dl >
< / div >
< / div >
< / div >
< / div >
< footer >
< div class = "rst-footer-buttons" role = "navigation" aria-label = "footer navigation" >
< a href = "models.html" class = "btn btn-neutral float-right" title = "torchreid.models" accesskey = "n" rel = "next" > Next < span class = "fa fa-arrow-circle-right" > < / span > < / a >
< a href = "losses.html" class = "btn btn-neutral float-left" title = "torchreid.losses" accesskey = "p" rel = "prev" > < span class = "fa fa-arrow-circle-left" > < / span > Previous< / a >
< / div >
< hr / >
< div role = "contentinfo" >
< p >
© Copyright 2019, Kaiyang Zhou
< / p >
< / div >
Built with < a href = "http://sphinx-doc.org/" > Sphinx< / a > using a < a href = "https://github.com/rtfd/sphinx_rtd_theme" > theme< / a > provided by < a href = "https://readthedocs.org" > Read the Docs< / a > .
< / footer >
< / div >
< / div >
< / section >
< / div >
< script type = "text/javascript" >
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
< / script >
< / body >
< / html >