update print

pull/17/head
KaiyangZhou 2018-04-27 10:03:24 +01:00
parent dac3ca1486
commit 1702e018e4
5 changed files with 31 additions and 26 deletions

View File

@ -162,11 +162,10 @@ def main():
start_time = time.time() start_time = time.time()
best_rank1 = -np.inf best_rank1 = -np.inf
best_epoch = 0 best_epoch = 0
print("==> Start training")
for epoch in range(start_epoch, args.max_epoch): for epoch in range(start_epoch, args.max_epoch):
print("==> Epoch {}/{}".format(epoch+1, args.max_epoch)) train(epoch, model, criterion_xent, criterion_cent, optimizer_model, optimizer_cent, trainloader, use_gpu)
train(model, criterion_xent, criterion_cent, optimizer_model, optimizer_cent, trainloader, use_gpu)
if args.stepsize > 0: scheduler.step() if args.stepsize > 0: scheduler.step()
@ -194,7 +193,7 @@ def main():
elapsed = str(datetime.timedelta(seconds=elapsed)) elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def train(model, criterion_xent, criterion_cent, optimizer_model, optimizer_cent, trainloader, use_gpu): def train(epoch, model, criterion_xent, criterion_cent, optimizer_model, optimizer_cent, trainloader, use_gpu):
model.train() model.train()
losses = AverageMeter() losses = AverageMeter()
@ -216,7 +215,9 @@ def train(model, criterion_xent, criterion_cent, optimizer_model, optimizer_cent
losses.update(loss.item(), pids.size(0)) losses.update(loss.item(), pids.size(0))
if (batch_idx+1) % args.print_freq == 0: if (batch_idx+1) % args.print_freq == 0:
print("Batch {}/{}\t Loss {:.6f} ({:.6f})".format(batch_idx+1, len(trainloader), losses.val, losses.avg)) print("Epoch {}/{}\t Batch {}/{}\t Loss {:.6f} ({:.6f})".format(
epoch+1, args.max_epoch, batch_idx+1, len(trainloader), losses.val, losses.avg
))
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]): def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]):
model.eval() model.eval()

View File

@ -157,11 +157,10 @@ def main():
start_time = time.time() start_time = time.time()
best_rank1 = -np.inf best_rank1 = -np.inf
best_epoch = 0 best_epoch = 0
print("==> Start training")
for epoch in range(start_epoch, args.max_epoch): for epoch in range(start_epoch, args.max_epoch):
print("==> Epoch {}/{}".format(epoch+1, args.max_epoch)) train(epoch, model, criterion, optimizer, trainloader, use_gpu)
train(model, criterion, optimizer, trainloader, use_gpu)
if args.stepsize > 0: scheduler.step() if args.stepsize > 0: scheduler.step()
@ -189,7 +188,7 @@ def main():
elapsed = str(datetime.timedelta(seconds=elapsed)) elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def train(model, criterion, optimizer, trainloader, use_gpu): def train(epoch, model, criterion, optimizer, trainloader, use_gpu):
model.train() model.train()
losses = AverageMeter() losses = AverageMeter()
@ -207,7 +206,9 @@ def train(model, criterion, optimizer, trainloader, use_gpu):
losses.update(loss.item(), pids.size(0)) losses.update(loss.item(), pids.size(0))
if (batch_idx+1) % args.print_freq == 0: if (batch_idx+1) % args.print_freq == 0:
print("Batch {}/{}\t Loss {:.6f} ({:.6f})".format(batch_idx+1, len(trainloader), losses.val, losses.avg)) print("Epoch {}/{}\t Batch {}/{}\t Loss {:.6f} ({:.6f})".format(
epoch+1, args.max_epoch, batch_idx+1, len(trainloader), losses.val, losses.avg
))
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]): def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]):
model.eval() model.eval()

View File

@ -166,11 +166,10 @@ def main():
start_time = time.time() start_time = time.time()
best_rank1 = -np.inf best_rank1 = -np.inf
best_epoch = 0 best_epoch = 0
print("==> Start training")
for epoch in range(start_epoch, args.max_epoch): for epoch in range(start_epoch, args.max_epoch):
print("==> Epoch {}/{}".format(epoch+1, args.max_epoch)) train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
if args.stepsize > 0: scheduler.step() if args.stepsize > 0: scheduler.step()
@ -198,7 +197,7 @@ def main():
elapsed = str(datetime.timedelta(seconds=elapsed)) elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu): def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu):
model.train() model.train()
losses = AverageMeter() losses = AverageMeter()
@ -229,7 +228,9 @@ def train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu
losses.update(loss.item(), pids.size(0)) losses.update(loss.item(), pids.size(0))
if (batch_idx+1) % args.print_freq == 0: if (batch_idx+1) % args.print_freq == 0:
print("Batch {}/{}\t Loss {:.6f} ({:.6f})".format(batch_idx+1, len(trainloader), losses.val, losses.avg)) print("Epoch {}/{}\t Batch {}/{}\t Loss {:.6f} ({:.6f})".format(
epoch+1, args.max_epoch, batch_idx+1, len(trainloader), losses.val, losses.avg
))
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]): def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]):
model.eval() model.eval()

View File

@ -154,11 +154,10 @@ def main():
start_time = time.time() start_time = time.time()
best_rank1 = -np.inf best_rank1 = -np.inf
best_epoch = 0 best_epoch = 0
print("==> Start training")
for epoch in range(start_epoch, args.max_epoch): for epoch in range(start_epoch, args.max_epoch):
print("==> Epoch {}/{}".format(epoch+1, args.max_epoch)) train(epoch, model, criterion, optimizer, trainloader, use_gpu)
train(model, criterion, optimizer, trainloader, use_gpu)
if args.stepsize > 0: scheduler.step() if args.stepsize > 0: scheduler.step()
@ -186,7 +185,7 @@ def main():
elapsed = str(datetime.timedelta(seconds=elapsed)) elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def train(model, criterion, optimizer, trainloader, use_gpu): def train(epoch, model, criterion, optimizer, trainloader, use_gpu):
model.train() model.train()
losses = AverageMeter() losses = AverageMeter()
@ -201,7 +200,9 @@ def train(model, criterion, optimizer, trainloader, use_gpu):
losses.update(loss.item(), pids.size(0)) losses.update(loss.item(), pids.size(0))
if (batch_idx+1) % args.print_freq == 0: if (batch_idx+1) % args.print_freq == 0:
print("Batch {}/{}\t Loss {:.6f} ({:.6f})".format(batch_idx+1, len(trainloader), losses.val, losses.avg)) print("Epoch {}/{}\t Batch {}/{}\t Loss {:.6f} ({:.6f})".format(
epoch+1, args.max_epoch, batch_idx+1, len(trainloader), losses.val, losses.avg
))
def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20]): def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20]):
model.eval() model.eval()

View File

@ -163,11 +163,10 @@ def main():
start_time = time.time() start_time = time.time()
best_rank1 = -np.inf best_rank1 = -np.inf
best_epoch = 0 best_epoch = 0
print("==> Start training")
for epoch in range(start_epoch, args.max_epoch): for epoch in range(start_epoch, args.max_epoch):
print("==> Epoch {}/{}".format(epoch+1, args.max_epoch)) train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
if args.stepsize > 0: scheduler.step() if args.stepsize > 0: scheduler.step()
@ -195,7 +194,7 @@ def main():
elapsed = str(datetime.timedelta(seconds=elapsed)) elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu): def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu):
model.train() model.train()
losses = AverageMeter() losses = AverageMeter()
@ -217,7 +216,9 @@ def train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu
losses.update(loss.item(), pids.size(0)) losses.update(loss.item(), pids.size(0))
if (batch_idx+1) % args.print_freq == 0: if (batch_idx+1) % args.print_freq == 0:
print("Batch {}/{}\t Loss {:.6f} ({:.6f})".format(batch_idx+1, len(trainloader), losses.val, losses.avg)) print("Epoch {}/{}\t Batch {}/{}\t Loss {:.6f} ({:.6f})".format(
epoch+1, args.max_epoch, batch_idx+1, len(trainloader), losses.val, losses.avg
))
def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20]): def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20]):
model.eval() model.eval()