add mars dataset

pull/17/head
KaiyangZhou 2018-03-12 12:06:40 +00:00
parent 23e816dec9
commit 2205770dbd
1 changed files with 132 additions and 5 deletions

View File

@ -1,9 +1,11 @@
from __future__ import absolute_import
from __future__ import print_function, absolute_import
import os
import glob
import re
import sys
import os.path as osp
from scipy.io import loadmat
import numpy as np
"""Dataset classes"""
@ -13,10 +15,10 @@ class Market1501(object):
Reference:
Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015.
==========================
Dataset statistics:
# identities: 1501 (+1 for background)
# images: 12936 (train) + 3368 (query) + 15913 (gallery) =
# images: 12936 (train) + 3368 (query) + 15913 (gallery)
"""
root = './data/market1501'
train_dir = osp.join(root, 'bounding_box_train')
@ -56,7 +58,6 @@ class Market1501(object):
self.num_gallery_pids = num_gallery_pids
def _process_dir(self, dir_path, relabel=False):
print("Processing directory '{}'".format(dir_path))
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
pattern = re.compile(r'([-\d]+)_c(\d)')
@ -86,10 +87,128 @@ class Market1501(object):
print("Error: '{}' is not available.".format(dir_path))
sys.exit()
class Mars(object):
"""
MARS
Reference:
Zheng et al. MARS: A Video Benchmark for Large-Scale Person Re-identification. ECCV 2016.
Dataset statistics:
# identities: 1261
# tracklets: 8298 (train) + 1980 (query) + 9330 (gallery)
Args:
min_seq_len (int): tracklet with length shorter than this value will be discarded.
"""
root = './data/mars'
train_name_path = osp.join(root, 'info/train_name.txt')
test_name_path = osp.join(root, 'info/test_name.txt')
track_train_info_path = osp.join(root, 'info/tracks_train_info.mat')
track_test_info_path = osp.join(root, 'info/tracks_test_info.mat')
query_IDX_path = osp.join(root, 'info/query_IDX.mat')
def __init__(self, min_seq_len=0):
# prepare meta data
train_names = self._get_names(self.train_name_path)
test_names = self._get_names(self.test_name_path)
track_train = loadmat(self.track_train_info_path)['track_train_info'] # numpy.ndarray (8298, 4)
track_test = loadmat(self.track_test_info_path)['track_test_info'] # numpy.ndarray (12180, 4)
query_IDX = loadmat(self.query_IDX_path)['query_IDX'].squeeze() # numpy.ndarray (1980,)
query_IDX -= 1 # index from 0
track_query = track_test[query_IDX,:]
gallery_IDX = [i for i in range(track_test.shape[0]) if i not in query_IDX]
track_gallery = track_test[gallery_IDX,:]
train, num_train_tracklets, num_train_pids, num_train_imgs = \
self._process_data(train_names, track_train, home_dir='bbox_train', relabel=True, min_seq_len=min_seq_len)
query, num_query_tracklets, num_query_pids, num_query_imgs = \
self._process_data(test_names, track_query, home_dir='bbox_test', relabel=False, min_seq_len=min_seq_len)
gallery, num_gallery_tracklets, num_gallery_pids, num_gallery_imgs = \
self._process_data(test_names, track_gallery, home_dir='bbox_test', relabel=False, min_seq_len=min_seq_len)
num_imgs_per_tracklet = num_train_imgs + num_query_imgs + num_gallery_imgs
min_num = np.min(num_imgs_per_tracklet)
max_num = np.max(num_imgs_per_tracklet)
avg_num = np.mean(num_imgs_per_tracklet)
num_total_pids = num_train_pids + num_query_pids
num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets
print("=> MARS loaded")
print("Dataset statistics:")
print(" ------------------------------")
print(" subset | # ids | # tracklets")
print(" ------------------------------")
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets))
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets))
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets))
print(" ------------------------------")
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets))
print(" number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num))
print(" ------------------------------")
self.train = train
self.query = query
self.gallery = gallery
self.num_train_pids = num_train_pids
self.num_query_pids = num_query_pids
self.num_gallery_pids = num_gallery_pids
def _get_names(self, fpath):
names = []
with open(fpath, 'r') as f:
for line in f:
new_line = line.rstrip()
names.append(new_line)
return names
def _process_data(self, names, meta_data, home_dir=None, relabel=False, min_seq_len=0):
assert home_dir in ['bbox_train', 'bbox_test']
num_tracklets = meta_data.shape[0]
pid_list = list(set(meta_data[:,2].tolist()))
num_pids = len(pid_list)
if relabel: pid2label = {pid:label for label, pid in enumerate(pid_list)}
tracklets = []
num_imgs_per_tracklet = []
for tracklet_idx in range(num_tracklets):
data = meta_data[tracklet_idx,...]
start_index, end_index, pid, camid = data
if pid == -1: continue # junk images are just ignored
assert 1 <= camid <= 6
if relabel: pid = pid2label[pid]
camid -= 1 # index starts from 0
img_names = names[start_index-1:end_index]
# make sure image names correspond to the same person
pnames = [img_name[:4] for img_name in img_names]
assert len(set(pnames)) == 1, "Error: a single tracklet contains different person images"
# make sure all images are captured under the same camera
camnames = [img_name[5] for img_name in img_names]
assert len(set(camnames)) == 1, "Error: images are captured under different cameras!"
# append image names with directory information
img_paths = [osp.join(self.root, home_dir, img_name[:4], img_name) for img_name in img_names]
if len(img_paths) >= min_seq_len:
img_paths = tuple(img_paths)
tracklets.append((img_paths, pid, camid))
num_imgs_per_tracklet.append(len(img_paths))
num_tracklets = len(tracklets)
return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet
"""Create dataset"""
__factory = {
'market1501': Market1501,
'mars': Mars,
}
def get_names():
@ -101,4 +220,12 @@ def init_dataset(name, *args, **kwargs):
return __factory[name](*args, **kwargs)
if __name__ == '__main__':
dataset = Market1501()
#dataset = Market1501()
dataset = Mars()