diff --git a/README.rst b/README.rst
deleted file mode 100755
index c85209c..0000000
--- a/README.rst
+++ /dev/null
@@ -1,310 +0,0 @@
-Torchreid
-===========
-Torchreid is a library for deep-learning person re-identification, written in `PyTorch `_.
-
-It features:
-
-- multi-GPU training
-- support both image- and video-reid
-- end-to-end training and evaluation
-- incredibly easy preparation of reid datasets
-- multi-dataset training
-- cross-dataset evaluation
-- standard protocol used by most research papers
-- highly extensible (easy to add models, datasets, training methods, etc.)
-- implementations of state-of-the-art deep reid models
-- access to pretrained reid models
-- advanced training techniques
-- visualization tools (tensorboard, ranks, etc.)
-
-
-Code: https://github.com/KaiyangZhou/deep-person-reid.
-
-Documentation: https://kaiyangzhou.github.io/deep-person-reid/.
-
-How-to instructions: https://kaiyangzhou.github.io/deep-person-reid/user_guide.
-
-Model zoo: https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.
-
-Tech report: https://arxiv.org/abs/1910.10093.
-
-You can find some research projects that are built on top of Torchreid `here `_.
-
-
-What's new
-------------
-- [Feb 2021] ``v1.3.6`` Added `University-1652 `_, a new dataset for multi-view multi-source geo-localization (credit to `Zhedong Zheng `_).
-- [Feb 2021] ``v1.3.5``: Now the `cython code `_ works on Windows (credit to `lablabla `_).
-- [Jan 2021] Our recent work, `MixStyle `_ (mixing instance-level feature statistics of samples of different domains for improving domain generalization), has been accepted to ICLR'21. The code has been released at https://github.com/KaiyangZhou/mixstyle-release where the person re-ID part is based on Torchreid.
-- [Jan 2021] A new evaluation metric called `mean Inverse Negative Penalty (mINP)` for person re-ID has been introduced in `Deep Learning for Person Re-identification: A Survey and Outlook (TPAMI 2021) `_. Their code can be accessed at ``_.
-- [Aug 2020] ``v1.3.3``: Fixed bug in ``visrank`` (caused by not unpacking ``dsetid``).
-- [Aug 2020] ``v1.3.2``: Added ``_junk_pids`` to ``grid`` and ``prid``. This avoids using mislabeled gallery images for training when setting ``combineall=True``.
-- [Aug 2020] ``v1.3.0``: (1) Added ``dsetid`` to the existing 3-tuple data source, resulting in ``(impath, pid, camid, dsetid)``. This variable denotes the dataset ID and is useful when combining multiple datasets for training (as a dataset indicator). E.g., when combining ``market1501`` and ``cuhk03``, the former will be assigned ``dsetid=0`` while the latter will be assigned ``dsetid=1``. (2) Added ``RandomDatasetSampler``. Analogous to ``RandomDomainSampler``, ``RandomDatasetSampler`` samples a certain number of images (``batch_size // num_datasets``) from each of specified datasets (the amount is determined by ``num_datasets``).
-- [Aug 2020] ``v1.2.6``: Added ``RandomDomainSampler`` (it samples ``num_cams`` cameras each with ``batch_size // num_cams`` images to form a mini-batch).
-- [Jun 2020] ``v1.2.5``: (1) Dataloader's output from ``__getitem__`` has been changed from ``list`` to ``dict``. Previously, an element, e.g. image tensor, was fetched with ``imgs=data[0]``. Now it should be obtained by ``imgs=data['img']``. See this `commit `_ for detailed changes. (2) Added ``k_tfm`` as an option to image data loader, which allows data augmentation to be applied ``k_tfm`` times *independently* to an image. If ``k_tfm > 1``, ``imgs=data['img']`` returns a list with ``k_tfm`` image tensors.
-- [May 2020] Added the person attribute recognition code used in `Omni-Scale Feature Learning for Person Re-Identification (ICCV'19) `_. See ``projects/attribute_recognition/``.
-- [May 2020] ``v1.2.1``: Added a simple API for feature extraction (``torchreid/utils/feature_extractor.py``). See the `documentation `_ for the instruction.
-- [Apr 2020] Code for reproducing the experiments of `deep mutual learning `_ in the `OSNet paper `__ (Supp. B) has been released at ``projects/DML``.
-- [Apr 2020] Upgraded to ``v1.2.0``. The engine class has been made more model-agnostic to improve extensibility. See `Engine `_ and `ImageSoftmaxEngine `_ for more details. Credit to `Dassl.pytorch `_.
-- [Dec 2019] Our `OSNet paper `_ has been updated, with additional experiments (in section B of the supplementary) showing some useful techniques for improving OSNet's performance in practice.
-- [Nov 2019] ``ImageDataManager`` can load training data from target datasets by setting ``load_train_targets=True``, and the train-loader can be accessed with ``train_loader_t = datamanager.train_loader_t``. This feature is useful for domain adaptation research.
-
-
-Installation
----------------
-
-Make sure `conda `_ is installed.
-
-
-.. code-block:: bash
-
- # cd to your preferred directory and clone this repo
- git clone https://github.com/KaiyangZhou/deep-person-reid.git
-
- # create environment
- cd deep-person-reid/
- conda create --name torchreid python=3.7
- conda activate torchreid
-
- # install dependencies
- # make sure `which python` and `which pip` point to the correct path
- pip install -r requirements.txt
-
- # install torch and torchvision (select the proper cuda version to suit your machine)
- conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
-
- # install torchreid (don't need to re-build it if you modify the source code)
- python setup.py develop
-
-
-Get started: 30 seconds to Torchreid
--------------------------------------
-1. Import ``torchreid``
-
-.. code-block:: python
-
- import torchreid
-
-2. Load data manager
-
-.. code-block:: python
-
- datamanager = torchreid.data.ImageDataManager(
- root='reid-data',
- sources='market1501',
- targets='market1501',
- height=256,
- width=128,
- batch_size_train=32,
- batch_size_test=100,
- transforms=['random_flip', 'random_crop']
- )
-
-3 Build model, optimizer and lr_scheduler
-
-.. code-block:: python
-
- model = torchreid.models.build_model(
- name='resnet50',
- num_classes=datamanager.num_train_pids,
- loss='softmax',
- pretrained=True
- )
-
- model = model.cuda()
-
- optimizer = torchreid.optim.build_optimizer(
- model,
- optim='adam',
- lr=0.0003
- )
-
- scheduler = torchreid.optim.build_lr_scheduler(
- optimizer,
- lr_scheduler='single_step',
- stepsize=20
- )
-
-4. Build engine
-
-.. code-block:: python
-
- engine = torchreid.engine.ImageSoftmaxEngine(
- datamanager,
- model,
- optimizer=optimizer,
- scheduler=scheduler,
- label_smooth=True
- )
-
-5. Run training and test
-
-.. code-block:: python
-
- engine.run(
- save_dir='log/resnet50',
- max_epoch=60,
- eval_freq=10,
- print_freq=10,
- test_only=False
- )
-
-
-A unified interface
------------------------
-In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point.
-
-Below we provide an example to train and test `OSNet (Zhou et al. ICCV'19) `_. Assume :code:`PATH_TO_DATA` is the directory containing reid datasets. The environmental variable :code:`CUDA_VISIBLE_DEVICES` is omitted, which you need to specify if you have a pool of gpus and want to use a specific set of them.
-
-Conventional setting
-^^^^^^^^^^^^^^^^^^^^^
-
-To train OSNet on Market1501, do
-
-.. code-block:: bash
-
- python scripts/main.py \
- --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
- --transforms random_flip random_erase \
- --root $PATH_TO_DATA
-
-
-The config file sets Market1501 as the default dataset. If you wanna use DukeMTMC-reID, do
-
-.. code-block:: bash
-
- python scripts/main.py \
- --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
- -s dukemtmcreid \
- -t dukemtmcreid \
- --transforms random_flip random_erase \
- --root $PATH_TO_DATA \
- data.save_dir log/osnet_x1_0_dukemtmcreid_softmax_cosinelr
-
-The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". Under the same folder, you can find the `tensorboard `_ file. To visualize the learning curves using tensorboard, you can run :code:`tensorboard --logdir=log/osnet_x1_0_market1501_softmax_cosinelr` in the terminal and visit :code:`http://localhost:6006/` in your web browser.
-
-Evaluation is automatically performed at the end of training. To run the test again using the trained model, do
-
-.. code-block:: bash
-
- python scripts/main.py \
- --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
- --root $PATH_TO_DATA \
- model.load_weights log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250 \
- test.evaluate True
-
-
-Cross-domain setting
-^^^^^^^^^^^^^^^^^^^^^
-
-Suppose you wanna train OSNet on DukeMTMC-reID and test its performance on Market1501, you can do
-
-.. code-block:: bash
-
- python scripts/main.py \
- --config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad.yaml \
- -s dukemtmcreid \
- -t market1501 \
- --transforms random_flip color_jitter \
- --root $PATH_TO_DATA
-
-Here we only test the cross-domain performance. However, if you also want to test the performance on the source dataset, i.e. DukeMTMC-reID, you can set :code:`-t dukemtmcreid market1501`, which will evaluate the model on the two datasets separately.
-
-Different from the same-domain setting, here we replace :code:`random_erase` with :code:`color_jitter`. This can improve the generalization performance on the unseen target dataset.
-
-Pretrained models are available in the `Model Zoo `_.
-
-
-Datasets
---------
-
-Image-reid datasets
-^^^^^^^^^^^^^^^^^^^^^
-- `Market1501 `_
-- `CUHK03 `_
-- `DukeMTMC-reID `_
-- `MSMT17 `_
-- `VIPeR `_
-- `GRID `_
-- `CUHK01 `_
-- `SenseReID `_
-- `QMUL-iLIDS `_
-- `PRID `_
-
-Geo-localization datasets
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-- `University-1652 `_
-
-Video-reid datasets
-^^^^^^^^^^^^^^^^^^^^^^^
-- `MARS `_
-- `iLIDS-VID `_
-- `PRID2011 `_
-- `DukeMTMC-VideoReID `_
-
-
-Models
--------
-
-ImageNet classification models
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-- `ResNet `_
-- `ResNeXt `_
-- `SENet `_
-- `DenseNet `_
-- `Inception-ResNet-V2 `_
-- `Inception-V4 `_
-- `Xception `_
-- `IBN-Net `_
-
-Lightweight models
-^^^^^^^^^^^^^^^^^^^
-- `NASNet `_
-- `MobileNetV2 `_
-- `ShuffleNet `_
-- `ShuffleNetV2 `_
-- `SqueezeNet `_
-
-ReID-specific models
-^^^^^^^^^^^^^^^^^^^^^^
-- `MuDeep `_
-- `ResNet-mid `_
-- `HACNN `_
-- `PCB `_
-- `MLFN `_
-- `OSNet `_
-- `OSNet-AIN `_
-
-
-Useful links
--------------
-- `OSNet-IBN1-Lite (test-only code with lite docker container) `_
-- `Deep Learning for Person Re-identification: A Survey and Outlook `_
-
-
-Citation
----------
-If you find this code useful to your research, please cite the following papers.
-
-.. code-block:: bash
-
- @article{torchreid,
- title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},
- author={Zhou, Kaiyang and Xiang, Tao},
- journal={arXiv preprint arXiv:1910.10093},
- year={2019}
- }
-
- @inproceedings{zhou2019osnet,
- title={Omni-Scale Feature Learning for Person Re-Identification},
- author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
- booktitle={ICCV},
- year={2019}
- }
-
- @article{zhou2019learning,
- title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},
- author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
- journal={arXiv preprint arXiv:1910.06827},
- year={2019}
- }