make projects compatible with the latest torchreid
parent
d60ca7f224
commit
2a9f44af9b
projects
DML
OSNet_AIN
|
@ -56,19 +56,19 @@ class ImageDMLEngine(Engine):
|
|||
)
|
||||
|
||||
def forward_backward(self, data):
|
||||
imgs, pids = self._parse_data_for_train(data)
|
||||
imgs, pids = self.parse_data_for_train(data)
|
||||
|
||||
if self.use_gpu:
|
||||
imgs = imgs.cuda()
|
||||
pids = pids.cuda()
|
||||
|
||||
outputs1, features1 = self.model1(imgs)
|
||||
loss1_x = self._compute_loss(self.criterion_x, outputs1, pids)
|
||||
loss1_t = self._compute_loss(self.criterion_t, features1, pids)
|
||||
loss1_x = self.compute_loss(self.criterion_x, outputs1, pids)
|
||||
loss1_t = self.compute_loss(self.criterion_t, features1, pids)
|
||||
|
||||
outputs2, features2 = self.model2(imgs)
|
||||
loss2_x = self._compute_loss(self.criterion_x, outputs2, pids)
|
||||
loss2_t = self._compute_loss(self.criterion_t, features2, pids)
|
||||
loss2_x = self.compute_loss(self.criterion_x, outputs2, pids)
|
||||
loss2_t = self.compute_loss(self.criterion_t, features2, pids)
|
||||
|
||||
loss1_ml = self.compute_kl_div(
|
||||
outputs2.detach(), outputs1, is_logit=True
|
||||
|
@ -113,7 +113,7 @@ class ImageDMLEngine(Engine):
|
|||
q = F.softmax(q, dim=1)
|
||||
return -(p * torch.log(q + 1e-8)).sum(1).mean()
|
||||
|
||||
def _two_stepped_transfer_learning(
|
||||
def two_stepped_transfer_learning(
|
||||
self, epoch, fixbase_epoch, open_layers, model=None
|
||||
):
|
||||
"""Two stepped transfer learning.
|
||||
|
@ -138,7 +138,7 @@ class ImageDMLEngine(Engine):
|
|||
open_all_layers(model1)
|
||||
open_all_layers(model2)
|
||||
|
||||
def _extract_features(self, input):
|
||||
def extract_features(self, input):
|
||||
if self.deploy == 'model1':
|
||||
return self.model1(input)
|
||||
|
||||
|
|
|
@ -47,7 +47,7 @@ class ImageSoftmaxNASEngine(Engine):
|
|||
)
|
||||
|
||||
def forward_backward(self, data):
|
||||
imgs, pids = self._parse_data_for_train(data)
|
||||
imgs, pids = self.parse_data_for_train(data)
|
||||
|
||||
if self.use_gpu:
|
||||
imgs = imgs.cuda()
|
||||
|
@ -65,7 +65,7 @@ class ImageSoftmaxNASEngine(Engine):
|
|||
|
||||
for k in range(self.mc_iter):
|
||||
outputs = self.model(imgs, lmda=lmda)
|
||||
loss = self._compute_loss(self.criterion, outputs, pids)
|
||||
loss = self.compute_loss(self.criterion, outputs, pids)
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
|
Loading…
Reference in New Issue