rm CUDA_VISIBLE_DEVICES
parent
4cc4adb54a
commit
35472dfe54
12
README.rst
12
README.rst
|
@ -143,9 +143,9 @@ Get started: 30 seconds to Torchreid
|
|||
|
||||
A unified interface
|
||||
-----------------------
|
||||
In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. "configs/" contains some predefined configs which you can use as a starting point.
|
||||
In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point.
|
||||
|
||||
Below we provide an example to train and test `OSNet (Zhou et al. ICCV'19) <https://arxiv.org/abs/1905.00953>`_. Assume :code:`PATH_TO_DATA` is the directory containing reid datasets.
|
||||
Below we provide an example to train and test `OSNet (Zhou et al. ICCV'19) <https://arxiv.org/abs/1905.00953>`_. Assume :code:`PATH_TO_DATA` is the directory containing reid datasets. The environmental variable :code:`CUDA_VISIBLE_DEVICES` is omitted, which you need to specify if you have a pool of gpus and want to use a specific set of them.
|
||||
|
||||
Conventional setting
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
@ -157,8 +157,7 @@ To train OSNet on Market1501, do
|
|||
python scripts/main.py \
|
||||
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
|
||||
--transforms random_flip random_erase \
|
||||
--root $PATH_TO_DATA \
|
||||
--gpu-devices 0
|
||||
--root $PATH_TO_DATA
|
||||
|
||||
|
||||
The config file sets Market1501 as the default dataset. If you wanna use DukeMTMC-reID, do
|
||||
|
@ -171,7 +170,6 @@ The config file sets Market1501 as the default dataset. If you wanna use DukeMTM
|
|||
-t dukemtmcreid \
|
||||
--transforms random_flip random_erase \
|
||||
--root $PATH_TO_DATA \
|
||||
--gpu-devices 0 \
|
||||
data.save_dir log/osnet_x1_0_dukemtmcreid_softmax_cosinelr
|
||||
|
||||
The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". Under the same folder, you can find the `tensorboard <https://pytorch.org/docs/stable/tensorboard.html>`_ file. To visualize the learning curves using tensorboard, you can run :code:`tensorboard --logdir=log/osnet_x1_0_market1501_softmax_cosinelr` in the terminal and visit :code:`http://localhost:6006/` in your web browser.
|
||||
|
@ -183,7 +181,6 @@ Evaluation is automatically performed at the end of training. To run the test ag
|
|||
python scripts/main.py \
|
||||
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml \
|
||||
--root $PATH_TO_DATA \
|
||||
--gpu-devices 0 \
|
||||
model.load_weights log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250 \
|
||||
test.evaluate True
|
||||
|
||||
|
@ -200,8 +197,7 @@ Suppose you wanna train OSNet on DukeMTMC-reID and test its performance on Marke
|
|||
-s dukemtmcreid \
|
||||
-t market1501 \
|
||||
--transforms random_flip color_jitter \
|
||||
--root $PATH_TO_DATA \
|
||||
--gpu-devices 0
|
||||
--root $PATH_TO_DATA
|
||||
|
||||
Here we only test the cross-domain performance. However, if you also want to test the performance on the source dataset, i.e. DukeMTMC-reID, you can set :code:`-t dukemtmcreid market1501`, which will evaluate the model on the two datasets separately.
|
||||
|
||||
|
|
|
@ -116,11 +116,6 @@ def main():
|
|||
parser.add_argument(
|
||||
'--root', type=str, default='', help='path to data root'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gpu-devices',
|
||||
type=str,
|
||||
default='',
|
||||
)
|
||||
parser.add_argument(
|
||||
'opts',
|
||||
default=None,
|
||||
|
@ -129,9 +124,6 @@ def main():
|
|||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.gpu_devices:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
|
||||
|
||||
cfg = get_default_config()
|
||||
cfg.use_gpu = torch.cuda.is_available()
|
||||
if args.config_file:
|
||||
|
|
Loading…
Reference in New Issue