update docs/readme

pull/249/head v1.0.5
KaiyangZhou 2019-10-23 16:11:15 +01:00
parent fe9395ef4d
commit 35d498eb73
3 changed files with 42 additions and 10 deletions

View File

@ -1,5 +1,20 @@
Torchreid
===========
.. image:: https://img.shields.io/github/license/KaiyangZhou/deep-person-reid
:alt: GitHub license
:target: https://github.com/KaiyangZhou/deep-person-reid/blob/master/LICENSE
.. image:: https://img.shields.io/github/v/release/KaiyangZhou/deep-person-reid
:alt: GitHub release (latest by date)
.. image:: https://img.shields.io/github/stars/KaiyangZhou/deep-person-reid
:alt: GitHub stars
:target: https://github.com/KaiyangZhou/deep-person-reid/stargazers
.. image:: https://img.shields.io/github/forks/KaiyangZhou/deep-person-reid
:alt: GitHub forks
:target: https://github.com/KaiyangZhou/deep-person-reid/network
Torchreid is a library built on `PyTorch <https://pytorch.org/>`_ for deep-learning person re-identification.
It features:
@ -26,6 +41,8 @@ How-to instructions: https://kaiyangzhou.github.io/deep-person-reid/user_guide.
Model zoo: https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.
Tech report: https://arxiv.org/abs/1910.10093.
Installation
---------------
@ -248,6 +265,7 @@ ReID-specific models
- `PCB <https://arxiv.org/abs/1711.09349>`_
- `MLFN <https://arxiv.org/abs/1803.09132>`_
- `OSNet <https://arxiv.org/abs/1905.00953>`_
- `OSNet-AIN <https://arxiv.org/abs/1910.06827>`_
Losses
------
@ -257,13 +275,27 @@ Losses
Citation
---------
If you find this code useful to your research, please cite the following publication.
If you find this code useful to your research, please cite the following publications.
.. code-block:: bash
@article{zhou2019osnet,
title={Omni-Scale Feature Learning for Person Re-Identification},
author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
journal={arXiv preprint arXiv:1905.00953},
@article{torchreid,
title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},
author={Zhou, Kaiyang and Xiang, Tao},
journal={arXiv preprint arXiv:1910.10093},
year={2019}
}
@inproceedings{zhou2019osnet,
title={Omni-Scale Feature Learning for Person Re-Identification},
author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
booktitle={ICCV},
year={2019}
}
@article{zhou2019learning,
title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},
author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
journal={arXiv preprint arXiv:1910.06827},
year={2019}
}

View File

Before

Width:  |  Height:  |  Size: 186 KiB

After

Width:  |  Height:  |  Size: 186 KiB

View File

@ -201,11 +201,11 @@ Visualize learning curves with tensorboard
The ``SummaryWriter()`` for tensorboard will be automatically initialized in ``engine.run()`` when you are training your model. Therefore, you do not need to do extra jobs. After the training is done, the ``*tf.events*`` file will be saved in ``save_dir``. Then, you just call ``tensorboard --logdir=your_save_dir`` in your terminal and visit ``http://localhost:6006/`` in a web browser. See `pytorch tensorboard <https://pytorch.org/docs/stable/tensorboard.html>`_ for further information.
Visualize ranked results
-------------------------
Ranked images can be visualized by setting ``visrank`` to true in ``engine.run()``. ``visrank_topk`` determines the top-k images to be visualized (Default is ``visrank_topk=10``). Note that ``visrank`` can only be used in test mode, i.e. ``test_only=True`` in ``engine.run()``. The images will be saved under ``save_dir/visrank_DATASETNAME`` where each image contains the top-k ranked list given a query. An example is shown below. Red and green denote incorrect and correct matches respectively.
Visualize ranking results
---------------------------
This can be achieved by setting ``visrank`` to true in ``engine.run()``. ``visrank_topk`` determines the top-k images to be visualized (Default is ``visrank_topk=10``). Note that ``visrank`` can only be used in test mode, i.e. ``test_only=True`` in ``engine.run()``. The output will be saved under ``save_dir/visrank_DATASETNAME`` where each plot contains the top-k similar gallery images given a query. An example is shown below where red and green denote incorrect and correct matches respectively.
.. image:: figures/ranked_results.jpg
.. image:: figures/ranking_results.jpg
:width: 800px
:align: center